
VERIFIED OPERATIONAL TRANSFORMATIONS FOR TREES

Sergey Sinchuk, Pavel Chuprkov, Konstantin Solomatov

Interactive Theorem Proving 2016



INTRODUCTION



REAL-TIME COLLABORATIVE EDITOR

A collaborative editor allows multiple users to edit a shared object
(e.g., Google Wave, Overleaf, Google Docs,…).

The following properties are required:

• Editing operations are interactive.

• The shared object is eventually consistent.

• Inter-user update latency is minimized.

Solution (almost):

• per-user replicas;

• remote execution.

3



EVENTUALLY INCONSISTENT

But consider the following concurrent interaction:

Problem: remote operations apply to a modified state.

Solution: transform remote operations to respect the change.

4



EVENTUALLY INCONSISTENT

But consider the following concurrent interaction:

Problem: remote operations apply to a modified state.

Solution: transform remote operations to respect the change.

4



EVENTUALLY INCONSISTENT

But consider the following concurrent interaction:

Problem: remote operations apply to a modified state.

Solution: transform remote operations to respect the change.

4



OPERATIONAL TRANSFORMATION— EXAMPLE

Consider the same interaction, but:

• Instead of applying Alice applies , which is a version of the former
that has been transformed through to respect its changes.

• Bob does the same for .

Now, final states are the same.

5



OPERATIONAL TRANSFORMATION— STRUCTURE

To use an operational transformation wemust understand:

• how two elementary operations are transformed;

• the order in which operations are transformed.

Operational transformation

Transformation function Integration algorithm

6



OPERATIONAL TRANSFORMATION— PROPERTIES

In the literature certain properties of the transformation function have been
found that guarantee eventual consistency of data for any sequence of
operations and any network behavior.

Definition (Convergence propertyC1)
Given two operations issued by two different users oA and oB, and they
corresponding transformed versions o′A and o′B, the results of executing
oA ∘ o′B and oB ∘ o′A are the same.

7



OPERATIONAL TRANSFORMATION— MULTIUSER

• The propertyC1 guarantees convergence only for 2 users.

• A stronger propertyC2 works in the general case but is hard to meet.

For the client-server architectureC1 is enough:

1-to-1 OT
Virtual server data objects
Virtual execution

8



OT FORMALIZATION



OVERVIEW

The formalization of an OT for a particular data model consists of:

• formalization of the data model and the operations set;

• an interpretation function interp that defines operation semantics;

• a transformation function it that performs transformation;

• proof of the formula expressing propertyC1 of it;

Formalization toolkit:

• The Coq Proof Assistant (Coq)

• A Small Scale Reflection Extension (SSReflect)

10



INTERPRETATION FUNCTION

Domains:

• X— the set of data object states

• cmd— the set of operations

There could be certain circumstances under which a particular operation is
inapplicable to the given data object state:

• Text Editor: Remove/insert a symbol at an non-existent position

• Filesystem: Remove/edit a file that does not exist

Thus, we arrive to the following signature:

interp ∶ cmd → X → option X.

11



TRANSFORMATION FUNCTION— CLASSIC

There is a straightforward signature for transformation function it:

it0 ∶ cmd → cmd → cmd.

In terms of the circled notation we used so far: it( , ) = .

Although this signature served well in the literature, we are going to
introduce twomodifications aiming to simplify implementation of it .

12



TRANSFORMATION FUNCTION— PRIORITIES

Consider the following conflicting situation:

Both transformation functions are executed under almost the same
transformation context. Extra care must be taken to ensureC1.

13



TRANSFORMATION FUNCTION— PRIORITIES

There are many ways to solve the conflict that can be found in the literature:

• Cancel both operations.

Semantics and UX are broken.

• Use model-specific information (e.g., a letter that has a lower Ascii code
goes first).

The definition of it becomes unnecessary complex.

• Embed user IDs (or priorities) into the operation.

This information is
irrelevant to operation’s main purpose — datamodification.

• Inform a transformation function externally about operation priorities.
The consistency conditionC1 must now quantify over these priorities.

We choose the last option since it has better logical consistency and ease of
implementation. For client-server architecture boolean flag is enough:

it1 ∶ cmd → cmd → bool→ cmd.

14



TRANSFORMATION FUNCTION— PRIORITIES

There are many ways to solve the conflict that can be found in the literature:

• Cancel both operations. Semantics and UX are broken.

• Use model-specific information (e.g., a letter that has a lower Ascii code
goes first).

The definition of it becomes unnecessary complex.

• Embed user IDs (or priorities) into the operation.

This information is
irrelevant to operation’s main purpose — datamodification.

• Inform a transformation function externally about operation priorities.
The consistency conditionC1 must now quantify over these priorities.

We choose the last option since it has better logical consistency and ease of
implementation. For client-server architecture boolean flag is enough:

it1 ∶ cmd → cmd → bool→ cmd.

14



TRANSFORMATION FUNCTION— PRIORITIES

There are many ways to solve the conflict that can be found in the literature:

• Cancel both operations. Semantics and UX are broken.

• Use model-specific information (e.g., a letter that has a lower Ascii code
goes first).

The definition of it becomes unnecessary complex.

• Embed user IDs (or priorities) into the operation.

This information is
irrelevant to operation’s main purpose — datamodification.

• Inform a transformation function externally about operation priorities.
The consistency conditionC1 must now quantify over these priorities.

We choose the last option since it has better logical consistency and ease of
implementation. For client-server architecture boolean flag is enough:

it1 ∶ cmd → cmd → bool→ cmd.

14



TRANSFORMATION FUNCTION— PRIORITIES

There are many ways to solve the conflict that can be found in the literature:

• Cancel both operations. Semantics and UX are broken.

• Use model-specific information (e.g., a letter that has a lower Ascii code
goes first). The definition of it becomes unnecessary complex.

• Embed user IDs (or priorities) into the operation.

This information is
irrelevant to operation’s main purpose — datamodification.

• Inform a transformation function externally about operation priorities.
The consistency conditionC1 must now quantify over these priorities.

We choose the last option since it has better logical consistency and ease of
implementation. For client-server architecture boolean flag is enough:

it1 ∶ cmd → cmd → bool→ cmd.

14



TRANSFORMATION FUNCTION— PRIORITIES

There are many ways to solve the conflict that can be found in the literature:

• Cancel both operations. Semantics and UX are broken.

• Use model-specific information (e.g., a letter that has a lower Ascii code
goes first). The definition of it becomes unnecessary complex.

• Embed user IDs (or priorities) into the operation.

This information is
irrelevant to operation’s main purpose — datamodification.

• Inform a transformation function externally about operation priorities.
The consistency conditionC1 must now quantify over these priorities.

We choose the last option since it has better logical consistency and ease of
implementation. For client-server architecture boolean flag is enough:

it1 ∶ cmd → cmd → bool→ cmd.

14



TRANSFORMATION FUNCTION— PRIORITIES

There are many ways to solve the conflict that can be found in the literature:

• Cancel both operations. Semantics and UX are broken.

• Use model-specific information (e.g., a letter that has a lower Ascii code
goes first). The definition of it becomes unnecessary complex.

• Embed user IDs (or priorities) into the operation. This information is
irrelevant to operation’s main purpose — datamodification.

• Inform a transformation function externally about operation priorities.
The consistency conditionC1 must now quantify over these priorities.

We choose the last option since it has better logical consistency and ease of
implementation. For client-server architecture boolean flag is enough:

it1 ∶ cmd → cmd → bool→ cmd.

14



TRANSFORMATION FUNCTION— PRIORITIES

There are many ways to solve the conflict that can be found in the literature:

• Cancel both operations. Semantics and UX are broken.

• Use model-specific information (e.g., a letter that has a lower Ascii code
goes first). The definition of it becomes unnecessary complex.

• Embed user IDs (or priorities) into the operation. This information is
irrelevant to operation’s main purpose — datamodification.

• Inform a transformation function externally about operation priorities.
The consistency conditionC1 must now quantify over these priorities.

We choose the last option since it has better logical consistency and ease of
implementation. For client-server architecture boolean flag is enough:

it1 ∶ cmd → cmd → bool→ cmd.

14



TRANSFORMATION FUNCTION— RESULT

Here are few operation transformation “patterns” that we encountered
during the course of OT implementation:

• do nothing (e.g., editing of a deleted word);

• cancel one operation and apply another (e.g., contradicting operations);

• split operation (e.g., words removal crosses text formatting boundaries).

In all these cases we do not use any new kinds of operations, but rather we
use a combination of existing operations (compound operation):

it1 ∶ cmd → cmd → bool→ list cmd.

15



COMPLETE DEFINITION

Everything that we have considered so far can be captured in the Coq class:

Class OTBase (X cmd: Type) := {

interp:cmd → X → option X;

it :cmd → cmd → bool → list cmd;
it_c1 :forall (op1 op2: cmd)(f: bool)(s s1 s2: X),

interp op1 s = Some s1 → interp op2 s = Some s2 →
let s21:= exec_all interp (Some s2) (it op1 op2 f) in

let s12:= exec_all interp (Some s1) (it op2 op1 ~~f) in

s21 = s12 /\ s21 <> None

}.

Where exec_all executes a list of operations by the sequential application
of interp.

16



ONE CAVEAT

The introduction of composite operations has an unpleasant effect:

• consider cmd = { };
• let the transformation be it( , ) = [ , ];
• assume that Alice has executed only once, but Bob has done it twice.

Oops!

17



ONE CAVEAT

The introduction of composite operations has an unpleasant effect:

• consider cmd = { };
• let the transformation be it( , ) = [ , ];
• assume that Alice has executed only once, but Bob has done it twice.

Oops!

17



ONE CAVEAT

The introduction of composite operations has an unpleasant effect:

• consider cmd = { };
• let the transformation be it( , ) = [ , ];
• assume that Alice has executed only once, but Bob has done it twice.

Oops!

17



TERMINATION CONDITION

To overcome the problem we use a sufficient termination condition.

Formally, we define twomeasures: size and cost : cmd → N, and size
must be greater than zero. Finally, we extend those measures to compound
operations by additivity.

Now consider any transformation that starts with some , and results in
and , where the latter operations are compound. It must hold that:

• the total size does not increase;

• the total cost does not increase;

• at least one of the following is true:
• size of neither or decreases
• the total costmust decrease.

Intuitively, composite operations do not occur while size does not change,
but cost can not decrease forever.

18



APPLICATIONS



SOFTWARE ENGINEERING CLASSICS

Classic software engineer “correctness proof” techniques:

• Extensive (automated) unit testing does not cover all cases.

• Proof by hand is error prone if too bulky.

Those tools are industry standards and are time-proven, but OT has a few
specificities that complicates correctness check:

• OT lies at the very core of the system and, thus, is a critical component.

• The number of cases in a proof is enormous.

On the way of a JetPad platform development we decided that an ultimate
tool is required — the formal verification.

20



TEXT EDITOR — PROBLEM STATEMENT

The first component of the JetPad platform is a projectional text editor.

To support modularity and projectional nature of the editor, the data model
has to fulfil the following requirements:

• a hierarchical tree-like structure;
• the specific data content should be abstracted away.

21



TEXT EDITOR — MODEL DESCRIPTION

We will use as a model an ordered rooted tree where each internal node has
a label, which is itself an instance of OTBase:

Context {T : eqType} (TC: Type) {otT : OTBase T TC}.

Model Operations

Inductive tree_cmd : Type :=

| EditLabel : TC → tree_cmd

| TreeInsert : nat → list (tree T )
→ tree_cmd

| TreeRemove : nat → list (tree T )
→ tree_cmd

| OpenRoot : nat → tree_cmd.

OpenRoot 2 (TreeRemove 0 [::e]) removes the first e node.
C1 has been proven; computability is trivial.

22



FILE SYSTEM

To collaboratively store and manage documents created with the text editor,
JetPad uses an internal file system, which is also naturally a tree, but is
different from the text editor:

• the tree is unordered;

• operations do not aggregate (affect only a single file);

• the Edit operation has a simple replacing semantics.

Model Operations

Inductive raw_fs_cmd :=

| Edit : T → T → raw_fs_cmd

| Create : tree T → raw_fs_cmd

| Remove : tree T → raw_fs_cmd

| Open : T → raw_fs_cmd.

C1 and computability have been proven.

23



EXPERIMENTAL RICH TEXT EDITOR OPERATIONS

There is a tradeoff between operations complexity and semantic accuracy.
Consider the following scenario:

1. Alice and Bob start with “I love IP”.
2. Alice decides to insert “T” between “I” and “P”.
3. Bob decides to make “IP” italic.

If OT supports only letter by letter operations then they will get “I love ITP”.

To remedy the situation we introduced twomore operations for text editors:
| TreeUnite : nat → T → list (tree T ) → tree_cmd

| TreeFlatten : nat → tree T → tree_cmd

Illustration of the TreeUnite 2 d [::e, f] behavior
24



CONCLUSION



CONCLUSION

From our perspective the most notable implications from our work are:

• ITP makes formal OT verification feasible even for complex data models
such as hierarchically structured data;

• tools are relatively easy to master by an average software engineer;

• encountered contradictions are easily convertible to definition errors.

Our contribution to the ITP/OT:

• modular library of OT definitions (github.com/JetBrains/ot-coq);

• compound operations and their OT computability property;

• Coq correctness proof of text editor and FS OT implementations.

ITP/OT’s contribution to us:

• Several implementation errors unnoticed during testing were fixed.

26



Thank you for your attention and for the great work you do!


	Introduction
	OT Formalization
	Applications
	conclusion

