
Mostly Automated Formal Verification
of Loop Dependencies

Thomas Grégoire,
Adam Chlipala

August 21, 2016

1 / 26

A bit of motivation

� Consider a PDE in dimension ≤ 3, e.g., the 1D Heat equation:

∂u

∂t
− α∂

2u

∂x2
= 0

� One way of solving it: finite-difference schemes.

∂u

∂t
≈ u(t + ∆t, x , y)− u(t, x , y)

∆t

∂2u

∂x2
≈ u(t, x + ∆x , y)− 2u(t, x , y) + u(t, x −∆x , y)

∆x2

2 / 26

A bit of motivation (2)

� Yields an equation of the form:

u[t + 1, x] = F (u[t, x], u[t, x + 1], u[t, x − 1])

� Graphically:

3 / 26

Implementing stencil code (1)

� Naive algorithm: left-to-right, bottom-up traversal.

� We can do better: cache-oblivious implementation!

4 / 26

Implementing stencil code (2)

� Stencil code calls for parallel implementation.

� Typical implementation: each node computes values until it needs
more data. Synchronize, then repeat.

� Limiting factor = number of synchronizations. Goal is to
minimize it.

5 / 26

Implementing stencil code in parallel

6 / 26

Goals of this talk

� Define stencils and stencil algorithms within Coq.

� Formalize the notion of “algorithm A satisfies the dependencies of
stencil S.”

� Investigate automation.

Note: larger scope. Applies to dynamic programming, some image
filters, Gauss-Seidel iterations, etc.

7 / 26

Representing stencils

Parameters T I J : Z.

Module Jacobi2D <: (PROBLEM Z3).
Local Open Scope aexpr.

Definition space := J0, TK×J0, IK×J0, JK.
Definition target := J0, TK×J0, IK×J0, JK.
Definition dep c :=
match c with

| (t,i,j) ⇒ [(t−1,i,j); (t−1,i−1,j);
(t−1,i+1,j); (t−1,i,j−1); (t−1,i,j+1)]

end.
End Jacobi2D.

8 / 26

Programs and their correctness

� Programs are Hoare-logic style, with a “flag” command.

� Intuitively (for now): flag = compute this cell.

� Trivial program for the Jacobi 2D stencil:

f o r t=0 to T do
f o r i =0 to I do

f o r j =0 to J do
flag ut [i , j]

9 / 26

Correctness of stencil code

� Completeness: all cells we need to compute are eventually
computed.

� Correctness: no dependency is violated. Checked through a
translation process:

f o r t=0 to T do
f o r i =0 to I do

f o r j =0 to J do
flag ut [i , j]

⇒

f o r t=0 to T do
f o r i =0 to I do

f o r j =0 to J do
assert (t − 1, i , j) ;
assert (t − 1, i + 1, j) ;
assert (t − 1, i − 1, j) ;
assert (t − 1, i , j + 1) ;
assert (t − 1, i , j − 1) ;
flag (t, i , j)

10 / 26

Syntax and semantics

� We keep a boolean for each cell, indicating whether it has already
been computed.

� flag c marks cell c as computed.

� assert c checks that c has been computed and fails if not.

� Syntax:
p ::= nop | p; p | flag c | assert c | if b then p else p | for v = e to e do p
e ::= k | v | e + e | e − e | e × e | e/e | e mod e
b ::= ε | not b | b or b | b and b | e = e | e 6= e | e ≤ e | e ≥ e | e < e | e > e
k ∈ Z, ε ∈ {>,⊥}

11 / 26

Semantics

� Given by a judgment ρ ` (C1, p) ⇓ C2.

� “If I execute p in environment ρ knowing the cells in C1, then it
terminates without any assertion failing, and I will know the cells
in C2.”

� Assert and flag:

Assert:
[[c]]ρ ∈ C ∨ [[c]]ρ /∈ space

ρ ` (C , assert c) ⇓ C
Flag:

ρ ` (C ,flag c) ⇓ C ∪ {[[c]]ρ}

� Remaining rules are inherited from Hoare logic.

12 / 26

Verification Conditions

� As usual, we can generate verification conditions recursively on
every program.

� More precisely, we prove a statement of the form:

“Let p be a program, ρ an environment, and C a set of cells. If
VCρ,C (p) holds, then ρ ` (C , p) ⇓ (C ∪ Shapeρ(p))”.

� Intuitively, Shapeρ(p) is the set of cells computed by p if it does
not fail.

13 / 26

Shapeρ . . .

Intuitively, Shapeρ(p) is the set of cells computed by p if it does not
fail.

Shapeρ(nop) := ∅, Shapeρ(flag c) := {[[c]]ρ}

Shapeρ(if b then p1 else p2) :=

{
Shapeρ(p1) if [[b]]ρ = >
Shapeρ(p2) otherwise

Shapeρ(p1; p2) := Shapeρ(p1) ∪ Shapeρ(p2)

Shapeρ(assert c) := ∅

Shapeρ(for x = a to b do p) :=
⋃

k∈[[A,B]] Shapeρ[x←k](p), A = [[a]]ρ,B = [[b]]ρ

14 / 26

. . . and the verification conditions

VCρ,C (nop) := >, VCρ,C (flag c) := >

VCρ,C (if b then p1 else p2) :=

{
VCρ,C (p1) if [[b]]ρ = >
VCρ,C (p2) otherwise

VCρ,C (p1; p2) := VCρ,C (p1) ∧ VCρ,C∪Shapeρ(p1)
(p2)

VCρ,C (assert c) := [[c]]ρ ∈ C ∨ [[c]]ρ 6∈ space

VCρ,C (for x = a to b do p) := ∀A ≤ i ≤ B. VCρ[x←i],D(p)

A = [[a]]ρ, B = [[b]]ρ, D = C ∪ Shapeρ(for x = a to i − 1 do p)

15 / 26

An example: optimal three-point stencil

t

x

t

x

Definition Walk1 : { Tp : trapezoid | WF Tp } -> prog.
refine (Fix Vol_order_wf (fun _ ⇒

prog) (fun Tp self ⇒ _)).

destruct Tp as [[[[[[t0 t1] x0] v0] x1] v1]].

refine (let h := t1 − t0 in

if h =? 1 then

For "x" From x0 To (x1 − 1) Do

Fire (t0 : aexpr, "x" : aexpr)
else

if (h ∗ 4) <? ((x1 − x0) ∗ 2 + (v1 − v0) ∗ h) then

let xm := ((x0 + x1) ∗ 2 + (v0 + v1 + 2) ∗ h) / 4 in

Call self (t0, t1, x0, v0, xm, −1);;
Call self (t0, t1, xm, −1, x1, v1)

else

let s := h / 2 in

Call self (t0, t0 + s, x0, v0, x1, v1);;
Call self (t0 + s, t1, x0 + v0 ∗ s, v0, x1 + v1 ∗ s, v1))%prog;

clear self; abstract (substs; prove_Vol || prove_WF).
Defined.

16 / 26

A word about automation

� We added automation to clean up the result. Leaves us with goals
of the form:

c ∈ K ,

where c is a cell and K a set of cells.

� Stencils are usually defined on Zn. Resulting goals/hypotheses are
systems of non-linear integer equations.

� nia can solve them, but slow to fail, hence tough for branching.

� Still makes the user experience way nicer.

17 / 26

Back to distributed stencil code

18 / 26

Syntax for distributed programs

Computation step Communication step
i f T=0 then

f o r t=0 to 3 do
f o r i = t to 7− t do

fire (8× id + i , t)
e l s e (∗ T=1 ∗)

f o r t=1 to 3 do
f o r i = −t to t − 1 do

fire (8× id + i , t)
f o r i = −t to t − 1 do

fire (8× id + 8 + i , t)

i f T=0 then
i f to = id− 1 then

f o r t=0 to 3 do
fire (8× id + t, t)

e l s e i f to = id + 1 then
f o r t=0 to 3 do

fire (8× id + 4 + t, 3− t)

19 / 26

Semantics

� Two semantics for fire c: check that c is known
(communication), or check that its dependencies are satisfied and
flag it (computation).

� An execution trace is a triple (beforeComp, afterComp, sends)
with

beforeComp, afterComp : time× thread→ set cell,

sends : time× thread× thread→ set cell.

20 / 26

Some examples

beforeComp(T = 0, i = 0) = ∅,
afterComp(T = 0, i = 0) = hatched

sends(T = 0, i = 0, j = 1) = hatched,

sends(T = 0, i = 0, j = 2) = ∅,

beforeComp(T = 1, i = 0) = hatched & gray,

afterComp(T = 1, i = 0) = hatched,

21 / 26

Correctness (1)

A distributed stencil algorithm is correct if there exists a trace
satisfying:

� Computation steps happen as in the sequential case:

ρt,i ` (beforeComp(t, i), pcomp) ⇓ afterComp(t, i).

� The threads start from no knowledge:

beforeComp(t = 0) = ∅.

22 / 26

Correctness (2)

� The computation program describes the pattern sent to other
threads:

ρt,i ,j ` (∅, pcomm) ⇓ sends(t, i , j).

� A thread cannot send a value it does not know:

sends(t, i , j) ⊆ afterComp(t, i).

� What a thread knows at time t + 1, comes from its knowledge at
time t or was just received:

beforeComp(t + 1, i) = afterComp(t, i) ∪
⋃
j

sends(t, j , i).

23 / 26

Verifying distributed stencil code

� We derived the “trace that the program would follow if it did not
fail.”

� We also designed a VC generator.

� Theorem similar to the one for sequential code.

� With automation, optimized distributed three-point stencil
≈ 160LoC.

24 / 26

Summary

� Definition of stencils, as well as sequential and distributed stencil
algorithms.

� A simple solution that leads to the proof of an optimal algorithm.

� In this “synchronous” framework, verifying distributed algorithms
boils down to verifying some sequential algorithms.

� Some more work needed in terms of automation.

� Interesting direction: synthesis!

25 / 26

Thank you for your attention!

Type Lines of Proof

Heat Equation, 2D Naive 30

American Put Stock Options Naive 25

American Put Stock Options Optimized 25

Distributed American Put Stock Options Naive 65

Distributed American Put Stock Options Optimized 150

Pairwise Sequence Alignment
Dynamic

programming
20

Distributed Three-Point Stencil Naive 60

Distributed Three-Point Stencil Optimized 160

Universal Three-Point Stencil Algorithm Optimal 300

https://github.com/mit-plv/stencils

26 / 26

https://github.com/mit-plv/stencils

