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Introduction

Motivation

I Lorenz attractor, chaos

I Tucker’s computer-aided proof

I goal: formal verification of program (and proof)

I ODE’s sensitive dependence on initial conditions

I numerical bounds from computer program

Contribution

I formalization of flow:
general theory for dependence on initial conditions

I use existing verified ODE-solver [Immler, TACAS 2015]:
bounds on variational equation
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The Flow of ODEs

I ordinary differential equation
(ODE)

I [Immler, Hölzl @ ITP 2012]:
initial value problems

I formalize flow ϕ(x0, t):
solution w.r.t. initial condition

I formalize dependence on initial
condition

I qualitative: continuous
I quantitative: differentiable

t ∈ R
x
∈
R
n

ẋ(t) = f (x(t))
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ẋ(t) = f (x(t))

3 / 14



The Flow of ODEs

I ordinary differential equation
(ODE)

I [Immler, Hölzl @ ITP 2012]:
initial value problems

I formalize flow ϕ(x0, t):
solution w.r.t. initial condition

I formalize dependence on initial
condition

I qualitative: continuous

I quantitative: differentiable

t ∈ R
x
∈
R
n
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Formalization

I continuity and differentiability are
“natural” properties (chapter 7):

I continuous ϕ
I differentiable ϕ

I technicalities demand “a firm and
extensive background in the
principles of real analysis.”

I proofs in chapter 17

I interface to the rest of the theory
that hides technical constructions
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The Interface: ex-ivl and ϕ

I locally Lipschitz continuous
f : Rn → Rn

(on open set X )

I ϕ(x0, t) :=
“unique solution of IVP

ẋ(t) = f (x(t)) ∧ x(0) = x0”

I maximal existence interval ex-ivl

I t∗ ∈ ex-ivl(x1)
I t∗ 6∈ ex-ivl(x2)

Theorem (flow solves IVP)

For t ∈ ex-ivl(x0):

I ϕ̇(x0, t) = f (ϕ(x0, t))

I ϕ(x0, 0) = x0

0 t

x0
ϕ(x0, t)

ẋ(t) = f (x(t))
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Flow property

0 t t + s

x

Theorem (Flow property)

(t ∈ ex-ivl(x) ∧ s ∈ ex-ivl(ϕ(x , t))) =⇒
ϕ(x , t + s) = ϕ(ϕ(x , t), s)
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Technical Lemmas
I Grönwall lemma

I exponential sensitivity
I same existence interval in neighborhood
I continuous ϕ at (x1, t

∗)
I continuity w.r.t. right-hand side of ODE

continuous-on [0; a] g =⇒

∀t. 0 ≤ g(t) ≤ C + K ·
∫ t

0
g(s)ds =⇒

∀t ∈ [0; a]. g(t) ≤ C · eK ·t

8 / 14
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I continuity w.r.t. right-hand side of ODE

O(et)
x1
x2

t ∈ ex-ivl(x1) ∩ ex-ivl(x2) =⇒ |ϕ(x1, t)− ϕ(x2, t)| ∈ O(et)
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t∗
x1

∀ε > 0. ∃δ. ϕ(Uδ(x1, t
∗)) ⊆ Uε(ϕ(x1, t

∗))
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Technical Lemmas
I Grönwall lemma
I exponential sensitivity
I same existence interval in neighborhood
I continuous ϕ at (x1, t

∗)
I continuity w.r.t. right-hand side of ODE

ẋ(t) = f (x(t)); ẋ(t) = g(x(t))

|f − g | < ε =⇒ |ϕf (x1, t)− ϕg (x1, t)| ∈ O(et)
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Differentiability
ODE ẋ(t) = f (x(t)) with f ′(x) derivative of f : R→ R
Variational Equation (R){

u̇(t) = f ′(ϕ(x0, t)) · u(t)

u(0) = 1

Theorem (derivative of flow)

∂ϕ

∂x
(x0, t) = u(t)
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Differentiability
ODE ẋ(t) = f (x(t)) with f ′(x) : R
Variational Equation (R){

u̇(t) = f ′(ϕ(x0, t)) · u(t)

u(0) = 1

requires: normed vector space of linear functions

I mathematics in Isabelle/HOL is type class based

I topological, metric, vector, normed spaces are type classes
I type of (bounded/continuous) linear functions
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Numerics

I encode derivative of flow as linear ODE

I [Immler, NFM2013/TACAS 2015]:
verified numerical enclosures for solutions of ODEs

I van der Pol equations:
ẋ = y
ẏ = (1− x2)y − x
(x0, y0) = (1.25, 2.27)
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Conclusion

I clean interface: flow ϕ, ex-ivl

I hides tedious technical constructions

I employ existing verified algorithm for numerical enclosures
I general theory with concrete application:

I Lorenz attractor
I step towards formal verification of Tucker’s proof
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