The Flow of ODEs

Fabian Immler \& Christoph Traut

ITP 2016

π

Technische Universität München

Introduction

Motivation

- Lorenz attractor, chaos

Introduction

Motivation

- Lorenz attractor, chaos
- Tucker's computer-aided proof

Introduction

Motivation

- Lorenz attractor, chaos
- Tucker's computer-aided proof
- goal: formal verification of program (and proof)

Introduction

Motivation

- Lorenz attractor, chaos
- Tucker's computer-aided proof
- goal: formal verification of program (and proof)
- ODE's sensitive dependence on initial conditions

Introduction

Motivation

- Lorenz attractor, chaos
- Tucker's computer-aided proof
- goal: formal verification of program (and proof)
- ODE's sensitive dependence on initial conditions
- numerical bounds from computer program

Introduction

Motivation

- Lorenz attractor, chaos
- Tucker's computer-aided proof
- goal: formal verification of program (and proof)
- ODE's sensitive dependence on initial conditions
- numerical bounds from computer program

Contribution

Introduction

Motivation

- Lorenz attractor, chaos
- Tucker's computer-aided proof
- goal: formal verification of program (and proof)
- ODE's sensitive dependence on initial conditions
- numerical bounds from computer program

Contribution

- formalization of flow: general theory for dependence on initial conditions

Introduction

Motivation

- Lorenz attractor, chaos
- Tucker's computer-aided proof
- goal: formal verification of program (and proof)
- ODE's sensitive dependence on initial conditions
- numerical bounds from computer program

Contribution

- formalization of flow: general theory for dependence on initial conditions
- use existing verified ODE-solver [Immler, TACAS 2015]: bounds on variational equation

Structure

Flow

Dependence on Initial Condition

Numerics

Structure

Flow

Dependence on Initial Condition

Numerics

The Flow of ODEs

- ordinary differential equation (ODE)

$$
\dot{x}(t)=f(x(t))
$$

The Flow of ODEs

- ordinary differential equation (ODE)
- [Immler, Hölzl @ ITP 2012]: initial value problems

$$
\dot{x}(t)=f(x(t))
$$

The Flow of ODEs

- ordinary differential equation (ODE)
- [Immler, Hölzl @ ITP 2012]: initial value problems
- formalize flow $\varphi\left(x_{0}, t\right)$: solution w.r.t. initial condition

$$
\dot{x}(t)=f(x(t))
$$

The Flow of ODEs

- ordinary differential equation (ODE)
- [Immler, Hölzl @ ITP 2012]: initial value problems
- formalize flow $\varphi\left(x_{0}, t\right)$: solution w.r.t. initial condition
- formalize dependence on initial condition

$$
\dot{x}(t)=f(x(t))
$$

The Flow of ODEs

- ordinary differential equation (ODE)
- [Immler, Hölzl @ ITP 2012]: initial value problems
- formalize flow $\varphi\left(x_{0}, t\right)$: solution w.r.t. initial condition
- formalize dependence on initial condition
- qualitative: continuous

$$
\dot{x}(t)=f(x(t))
$$

The Flow of ODEs

- ordinary differential equation (ODE)
- [Immler, Hölzl @ ITP 2012]: initial value problems
- formalize flow $\varphi\left(x_{0}, t\right)$: solution w.r.t. initial condition
- formalize dependence on initial condition
- qualitative: continuous
- quantitative: differentiable

$$
\dot{x}(t)=f(x(t))
$$

The Flow of ODEs

- ordinary differential equation (ODE)
- [Immler, Hölzl @ ITP 2012]: initial value problems
- formalize flow $\varphi\left(x_{0}, t\right)$: solution w.r.t. initial condition
- formalize dependence on initial condition
- qualitative: continuous
- quantitative: differentiable

$$
\dot{x}(t)=f(x(t))
$$

Formalization

- continuity and differentiability are "natural" properties (chapter 7):

Differential Equations,

Dynamical Systems, and an Introduction to Chaos

Formalization

- continuity and differentiability are "natural" properties (chapter 7):
- continuous φ

Differential Equations,
Dynamical Systems, and an Introduction to Chaos

Formalization

- continuity and differentiability are "natural" properties (chapter 7):
- continuous φ
- differentiable φ

Differential Equations,

Dynamical Systems, and an Introduction to Chaos

Formalization

- continuity and differentiability are "natural" properties (chapter 7):
- continuous φ
- differentiable φ
- technicalities demand "a firm and extensive background in the principles of real analysis."

Differential Equations, Dynamical Systems, and an Introduction to Chaos

Morris W. Hirsch
Stephen Smale
Robert L. Devaney

Formalization

- continuity and differentiability are "natural" properties (chapter 7):
- continuous φ
- differentiable φ
- technicalities demand "a firm and extensive background in the principles of real analysis."
- proofs in chapter 17

Differential Equations, Dynamical Systems, and an Introduction to Chaos

Formalization

- continuity and differentiability are "natural" properties (chapter 7):
- continuous φ
- differentiable φ
- technicalities demand "a firm and extensive background in the principles of real analysis."
- proofs in chapter 17
- interface to the rest of the theory that hides technical constructions

Differential Equations, Dynamical Systems, and an Introduction to Chaos

Morris W. Hirsch
Stephen Smale
Robert L. Devaney

The Interface: ex-ivl and φ

- locally Lipschitz continuous
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ (on open set X)

The Interface: ex-ivl and φ

- locally Lipschitz continuous
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ (on open set x)
- $\varphi\left(x_{0}, t\right):=$
"unique solution of IVP
$\dot{x}(t)=f(x(t)) \wedge x(0)=x_{0}{ }^{\prime \prime}$

The Interface: ex-ivl and φ

- locally Lipschitz continuous
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ (on open set x)
- $\varphi\left(x_{0}, t\right):=$
"unique solution of IVP
$\dot{x}(t)=f(x(t)) \wedge x(0)=x_{0}{ }^{\prime \prime}$
- maximal existence interval ex-ivl

The Interface: ex-ivl and φ

- locally Lipschitz continuous
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ (on open set x)
- $\varphi\left(x_{0}, t\right):=$
"unique solution of IVP
$\dot{x}(t)=f(x(t)) \wedge x(0)=x_{0}{ }^{\prime \prime}$
- maximal existence interval ex-ivl
- $t^{*} \in \operatorname{ex-iv}\left(x_{1}\right)$
- $t^{*} \notin e x-i v /\left(x_{2}\right)$

The Interface: ex-ivl and φ

- locally Lipschitz continuous
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ (on open set x)
- $\varphi\left(x_{0}, t\right):=$
"unique solution of IVP
$\dot{x}(t)=f(x(t)) \wedge x(0)=x_{0}{ }^{\prime \prime}$
- maximal existence interval ex-ivl
- $t^{*} \in \operatorname{ex-iv}\left(x_{1}\right)$
- $t^{*} \notin e x-i v\left(x_{2}\right)$

Theorem (flow solves IVP)
For $t \in e x-i v /\left(x_{0}\right)$:

The Interface: ex-ivl and φ

- locally Lipschitz continuous
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ (on open set X)
- $\varphi\left(x_{0}, t\right):=$
"unique solution of IVP
$\dot{x}(t)=f(x(t)) \wedge x(0)=x_{0}{ }^{\prime \prime}$
- maximal existence interval ex-ivl
- $t^{*} \in \operatorname{ex-iv}\left(x_{1}\right)$
- $t^{*} \notin e x-i v /\left(x_{2}\right)$

Theorem (flow solves IVP)
For $t \in e x-i v /\left(x_{0}\right)$:

- $\dot{\varphi}\left(x_{0}, t\right)=f\left(\varphi\left(x_{0}, t\right)\right)$

The Interface: ex-ivl and φ

- locally Lipschitz continuous
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ (on open set x)
- $\varphi\left(x_{0}, t\right):=$
"unique solution of IVP
$\dot{x}(t)=f(x(t)) \wedge x(0)=x_{0}{ }^{\prime \prime}$
- maximal existence interval ex-ivl
- $t^{*} \in \operatorname{ex-iv}\left(x_{1}\right)$
- $t^{*} \notin e x-i v\left(x_{2}\right)$

Theorem (flow solves IVP)
For $t \in e x-i v /\left(x_{0}\right)$:

- $\dot{\varphi}\left(x_{0}, t\right)=f\left(\varphi\left(x_{0}, t\right)\right)$
- $\varphi\left(x_{0}, 0\right)=x_{0}$

Flow property

Theorem (Flow property)
$(t \in e x-i v /(x) \wedge s \in e x-i v /(\varphi(x, t))) \Longrightarrow$ $\varphi(x, t+s)=\varphi(\varphi(x, t), s)$

Structure

Flow

Dependence on Initial Condition

Numerics

Structure

Flow

Dependence on Initial Condition

Technical Lemmas

- Grönwall lemma
continuous-on $[0 ; a] g \Longrightarrow$
$\forall t .0 \leq g(t) \leq C+K \cdot \int_{0}^{t} g(s) \mathrm{d} s \Longrightarrow$
$\forall t \in[0 ; a] \cdot g(t) \leq C \cdot e^{K \cdot t}$

Technical Lemmas

- Grönwall lemma
- exponential sensitivity

$t \in e x-i v /\left(x_{1}\right) \cap e x-i v /\left(x_{2}\right) \Longrightarrow\left|\varphi\left(x_{1}, t\right)-\varphi\left(x_{2}, t\right)\right| \in \mathcal{O}\left(e^{t}\right)$

Technical Lemmas

- Grönwall lemma
- exponential sensitivity
- same existence interval in neighborhood

Technical Lemmas

- Grönwall lemma
- exponential sensitivity
- same existence interval in neighborhood

Technical Lemmas

- Grönwall lemma
- exponential sensitivity
- same existence interval in neighborhood
- continuous φ at $\left(x_{1}, t^{*}\right)$

$$
\begin{aligned}
& \forall \varepsilon>0 . \exists \delta . \varphi\left(U_{\delta}\left(x_{1}, t^{*}\right)\right) \subseteq U_{\varepsilon}\left(\varphi\left(x_{1}, t^{*}\right)\right)
\end{aligned}
$$

Technical Lemmas

- Grönwall lemma
- exponential sensitivity
- same existence interval in neighborhood
- continuous φ at $\left(x_{1}, t^{*}\right)$
- continuity w.r.t. right-hand side of ODE

$$
\begin{gathered}
\dot{x}(t)=f(x(t)) ; \quad \dot{x}(t)=g(x(t)) \\
|f-g|<\varepsilon \Longrightarrow\left|\varphi_{f}\left(x_{1}, t\right)-\varphi_{g}\left(x_{1}, t\right)\right| \in \mathcal{O}\left(e^{t}\right)
\end{gathered}
$$

Differentiability

ODE $\dot{x}(t)=f(x(t))$ with $f^{\prime}(x)$ derivative of $f: \mathbb{R} \rightarrow \mathbb{R}$
Variational Equation (\mathbb{R})

$$
\left\{\begin{array}{l}
\dot{u}(t)=f^{\prime}\left(\varphi\left(x_{0}, t\right)\right) \cdot u(t) \\
u(0)=1
\end{array}\right.
$$

Differentiability

ODE $\dot{x}(t)=f(x(t))$ with $f^{\prime}(x)$ derivative of $f: \mathbb{R} \rightarrow \mathbb{R}$
Variational Equation (\mathbb{R})

$$
\left\{\begin{array}{l}
\dot{u}(t)=f^{\prime}\left(\varphi\left(x_{0}, t\right)\right) \cdot u(t) \\
u(0)=1
\end{array}\right.
$$

Differentiability

17.6 Differentiability of the Flow

Now we return to the case of an autonomous differential equation $X^{\prime}=F(X)$, where F is assumed to be C^{1}. Our aim is to show that the flow $\phi(t, X)=$ $\phi_{t}(X)$ determined by this equation is a C^{1} function of the two variables, and to identify $\partial \phi / \partial X$. We know, of course, that ϕ is continuously differentiable in the variable t, so it suffices to prove differentiability in X.
Toward that end let $X(t)$ be a particular solution of the system defined for in a closed interval J about 0 . Suppose $X(0)=X_{0}$. For each $t \in J$ let

$$
A(t)=D F_{X(t)} .
$$

That is, $A(t)$ denotes the Jacobian matrix of F at the point $X(t)$. Since F is C^{1}, $A(t)$ is continuous. We define the nonautonomous linear equation

$$
U^{\prime}=A(t) U .
$$

This equation is known as the variational equation along the solution $X(t)$. From the previous section we know that the variational equation has a solution on all of J for every initial condition $U(0)=U_{0}$. Also, as in the autonomous case, solutions of this system satisfy the Linearity Principle.
The significance of this equation is that, if U_{0} is small, then the function

$$
t \rightarrow X(t)+U(t)
$$

is a good approximation to the solution $X(t)$ of the original autonomous equation with initial value $X(0)=X_{0}+U_{0}$.
To make this precise, suppose that $U(t, \xi)$ is the solution of the variational equation that satisfies $U(0, \xi)=\xi$ where $\xi \in \mathbb{R}^{n}$. If ξ and $X_{0}+\xi$ belong to \mathcal{O}, let $Y(t, \xi)$ be the solution of the autonomous equation $X^{\prime}=F(X)$ that satisfies $Y(0)=X_{0}+\xi$.

Proposition. Let J be the closed interval containing 0 on which $X(t)$ is defined. Then

$$
\lim _{\xi \rightarrow 0} \frac{|Y(t, \xi)-X(t)-U(t, \xi)|}{|\xi|}
$$

converges to 0 uniformly for $t \in J$.
This means that for every $\epsilon>0$, there exists $\delta>0$ such that if $|\xi| \leq \delta$, then

$$
|Y(t, \xi)-(X(t)+U(t, \xi))| \leq \epsilon|\xi|
$$

- $u(t)$

Differentiability

Variational

Differentiability

Variational

Differentiability

 Variational

Differentiability

ODE $\dot{x}(t)=f(x(t))$ with $f^{\prime}(x)$ derivative of $f: \mathbb{R} \rightarrow \mathbb{R}$
Variational Equation (\mathbb{R})

$$
\left\{\begin{array}{l}
\dot{u}(t)=f^{\prime}\left(\varphi\left(x_{0}, t\right)\right) \cdot u(t) \\
u(0)=1
\end{array}\right.
$$

Differentiability

ODE $\dot{x}(t)=f(x(t))$ with $f^{\prime}(x)$ derivative of $f: \mathbb{R} \rightarrow \mathbb{R}$
Variational Equation (\mathbb{R})

$$
\left\{\begin{array}{l}
\dot{u}(t)=f^{\prime}\left(\varphi\left(x_{0}, t\right)\right) \cdot u(t) \\
u(0)=1
\end{array}\right.
$$

Theorem (derivative of flow)

$$
\frac{\partial \varphi}{\partial x}\left(x_{0}, t\right)=u(t)
$$

Differentiability

ODE $\dot{x}(t)=f(x(t))$ with $f^{\prime}(x): \mathbb{R}$
Variational Equation (\mathbb{R})

$$
\left\{\begin{array}{l}
\dot{u}(t)=f^{\prime}\left(\varphi\left(x_{0}, t\right)\right) \cdot u(t) \\
u(0)=1
\end{array}\right.
$$

Differentiability

ODE $\dot{x}(t)=f(x(t))$ with $\left.\mathrm{D} f\right|_{x}: \mathbb{R}^{n \times n}$
Variational Equation $\left(\mathbb{R}^{n}\right)$

$$
\left\{\begin{array}{l}
\dot{u}(t)=\left.\mathrm{D} f\right|_{\varphi\left(x_{0}, t\right)} \cdot u(t) \\
u(0)=1_{L}
\end{array}\right.
$$

Differentiability

ODE $\dot{x}(t)=f(x(t))$ with $\left.\mathrm{D} f\right|_{x}: \mathbb{R}^{n \times n}$
Variational Equation $\left(\mathbb{R}^{n}\right)$

$$
\left\{\begin{array}{l}
\dot{u}(t)=\left.\mathrm{D} f\right|_{\varphi\left(x_{0}, t\right)} \cdot u(t) \\
u(0)=1_{L}
\end{array}\right.
$$

requires: normed vector space of linear functions

- mathematics in Isabelle/HOL is type class based
- topological, metric, vector, normed spaces are type classes

Differentiability

ODE $\dot{x}(t)=f(x(t))$ with $\left.\mathrm{D} f\right|_{x}: \mathbb{R}^{n \times n}$
Variational Equation $\left(\mathbb{R}^{n}\right)$

$$
\left\{\begin{array}{l}
\dot{u}(t)=\left.\mathrm{D} f\right|_{\varphi\left(x_{0}, t\right)} \cdot u(t) \\
u(0)=1_{L}
\end{array}\right.
$$

requires: normed vector space of linear functions

- mathematics in Isabelle/HOL is type class based
- topological, metric, vector, normed spaces are type classes
- type of (bounded/continuous) linear functions

Structure

Flow

Dependence on Initial Condition

Numerics

Structure

Flow

Dependence on Initial Condition

Numerics

Numerics

- encode derivative of flow as linear ODE

Numerics

- encode derivative of flow as linear ODE
- [Immler, NFM2013/TACAS 2015]: verified numerical enclosures for solutions of ODEs

Numerics

- encode derivative of flow as linear ODE
- [Immler, NFM2013/TACAS 2015]: verified numerical enclosures for solutions of ODEs
- van der Pol equations:
$\dot{x}=y$
$\dot{y}=\left(1-x^{2}\right) y-x$
$\left(x_{0}, y_{0}\right)=(1.25,2.27)$

Conclusion

- clean interface: flow φ, ex-ivl

Conclusion

- clean interface: flow φ, ex-ivl
- hides tedious technical constructions

Conclusion

- clean interface: flow φ, ex-ivl
- hides tedious technical constructions
- employ existing verified algorithm for numerical enclosures

Conclusion

- clean interface: flow φ, ex-ivl
- hides tedious technical constructions
- employ existing verified algorithm for numerical enclosures
- general theory with concrete application:
- Lorenz attractor
- step towards formal verification of Tucker's proof

