Fabian Immler & Christoph Traut

ITP 2016

Motivation

Lorenz attractor, chaos

- Lorenz attractor, chaos
- Tucker's computer-aided proof

- Lorenz attractor, chaos
- Tucker's computer-aided proof
- goal: formal verification of program (and proof)

- Lorenz attractor, chaos
- Tucker's computer-aided proof
- goal: formal verification of program (and proof)
- ODE's sensitive dependence on initial conditions

- Lorenz attractor, chaos
- Tucker's computer-aided proof
- goal: formal verification of program (and proof)
- ODE's sensitive dependence on initial conditions
- numerical bounds from computer program

Motivation

- Lorenz attractor, chaos
- Tucker's computer-aided proof
- goal: formal verification of program (and proof)
- ODE's sensitive dependence on initial conditions
- numerical bounds from computer program

Contribution

Motivation

- Lorenz attractor, chaos
- Tucker's computer-aided proof
- goal: formal verification of program (and proof)
- ODE's sensitive dependence on initial conditions
- numerical bounds from computer program

Contribution

 formalization of *flow*: general theory for dependence on initial conditions

Motivation

- Lorenz attractor, chaos
- Tucker's computer-aided proof
- goal: formal verification of program (and proof)
- ODE's sensitive dependence on initial conditions
- numerical bounds from computer program

Contribution

- formalization of *flow*: general theory for dependence on initial conditions
- use existing verified ODE-solver [Immler, TACAS 2015]: bounds on variational equation

Structure

Flow

Dependence on Initial Condition

Numerics

Structure

Flow

Dependence on Initial Condition

Numerics

 ordinary differential equation (ODE)

$$\dot{\mathbf{x}}(t) = f(\mathbf{x}(t))$$

- ordinary differential equation (ODE)
- [Immler, Hölzl @ ITP 2012]: initial value problems

$$\dot{\mathbf{x}}(t) = f(\mathbf{x}(t))$$

- ordinary differential equation (ODE)
- [Immler, Hölzl @ ITP 2012]: initial value problems
- formalize flow φ(x₀, t):
 solution w.r.t. initial condition

- ordinary differential equation (ODE)
- [Immler, Hölzl @ ITP 2012]: initial value problems
- formalize flow φ(x₀, t):
 solution w.r.t. initial condition
- formalize dependence on initial condition

- ordinary differential equation (ODE)
- [Immler, Hölzl @ ITP 2012]: initial value problems
- formalize flow φ(x₀, t):
 solution w.r.t. initial condition
- formalize dependence on initial condition
 - qualitative: continuous

- ordinary differential equation (ODE)
- [Immler, Hölzl @ ITP 2012]: initial value problems
- formalize flow φ(x₀, t):
 solution w.r.t. initial condition
- formalize dependence on initial condition
 - qualitative: continuous
 - quantitative: differentiable

- ordinary differential equation (ODE)
- [Immler, Hölzl @ ITP 2012]: initial value problems
- formalize flow φ(x₀, t):
 solution w.r.t. initial condition
- formalize dependence on initial condition
 - qualitative: continuous
 - quantitative: differentiable

 continuity and differentiability are "natural" properties (chapter 7):

 continuity and differentiability are "natural" properties (chapter 7):

• continuous φ

THIRD EDITION

- continuity and differentiability are "natural" properties (chapter 7):
 - continuous φ
 - differentiable φ

THIRD EDITION

- continuity and differentiability are "natural" properties (chapter 7):
 - continuous φ
 - differentiable φ
- technicalities demand "a firm and extensive background in the principles of real analysis."

THIRD EDITION

- continuity and differentiability are "natural" properties (chapter 7):
 - continuous φ
 - differentiable φ
- technicalities demand "a firm and extensive background in the principles of real analysis."
 - proofs in chapter 17

THIRD EDITION

- continuity and differentiability are "natural" properties (chapter 7):
 - continuous φ
 - differentiable φ
- technicalities demand "a firm and extensive background in the principles of real analysis."
 - proofs in chapter 17
- interface to the rest of the theory that hides technical constructions

THIRD EDITION

► locally Lipschitz continuous $f : \mathbb{R}^n \to \mathbb{R}^n$ (on open set X)

- ► locally Lipschitz continuous $f : \mathbb{R}^n \to \mathbb{R}^n$ (on open set X)
- $\varphi(x_0, t) :=$ "unique solution of IVP $\dot{x}(t) = f(x(t)) \land x(0) = x_0$ "

- ► locally Lipschitz continuous $f : \mathbb{R}^n \to \mathbb{R}^n$ (on open set X)
- $\varphi(x_0, t) :=$ "unique solution of IVP $\dot{x}(t) = f(x(t)) \land x(0) = x_0$ "
- maximal existence interval ex-ivl

- ► locally Lipschitz continuous $f : \mathbb{R}^n \to \mathbb{R}^n$ (on open set X)
- $\varphi(x_0, t) :=$ "unique solution of IVP $\dot{x}(t) = f(x(t)) \land x(0) = x_0$ "
- maximal existence interval ex-ivl

•
$$t^* \in ex-ivl(x_1)$$

• $t^* \notin ex-ivl(x_2)$

► locally Lipschitz continuous $f : \mathbb{R}^n \to \mathbb{R}^n$ (on open set X)

- φ(x₀, t) :=
 "unique solution of IVP
 x(t) = f(x(t)) ∧ x(0) = x₀"
 maximal existence interval ex-iv/
 - t* ∈ ex-ivl(x₁)
 t* ∉ ex-ivl(x₂)

Theorem (flow solves IVP) For $t \in ex-ivl(x_0)$:

$$\dot{\mathbf{x}}(t) = f(\mathbf{x}(t))$$

► locally Lipschitz continuous $f : \mathbb{R}^n \to \mathbb{R}^n$ (on open set X)

- φ(x₀, t) :=
 "unique solution of IVP
 x(t) = f(x(t)) ∧ x(0) = x₀"
 maximal existence interval ex-iv/
 - t* ∈ ex-ivl(x₁)
 t* ∉ ex-ivl(x₂)

Theorem (flow solves IVP) For $t \in ex-ivl(x_0)$:

 $\dot{\varphi}(x_0, t) = f(\varphi(x_0, t))$

$$\dot{\mathbf{x}}(t) = f(\mathbf{x}(t))$$

► locally Lipschitz continuous $f : \mathbb{R}^n \to \mathbb{R}^n$ (on open set X)

- φ(x₀, t) :=
 "unique solution of IVP
 x(t) = f(x(t)) ∧ x(0) = x₀"
 maximal existence interval ex-iv/
 - $t^* \in ex-ivl(x_1)$ • $t^* \notin ex-ivl(x_2)$

Theorem (flow solves IVP)

For $t \in ex-ivl(x_0)$:

$$\dot{\varphi}(x_0,t) = f(\varphi(x_0,t))$$

$$\blacktriangleright \varphi(x_0,0) = x_0$$

$$\dot{\mathbf{x}}(t) = f(\mathbf{x}(t))$$

Flow property

Theorem (Flow property) $(t \in ex-ivl(x) \land s \in ex-ivl(\varphi(x,t))) \implies \varphi(x,t+s) = \varphi(\varphi(x,t),s)$

Structure

Flow

Dependence on Initial Condition

Numerics

Structure

Flow

Dependence on Initial Condition

Numerics

Technical Lemmas

Grönwall lemma

continuous-on [0; a] $g \implies$ $\forall t. \ 0 \le g(t) \le C + K \cdot \int_0^t g(s) \, ds \implies$ $\forall t \in [0; a]. \ g(t) \le C \cdot e^{K \cdot t}$

Technical Lemmas

- Grönwall lemma
- exponential sensitivity

 $t \in ex-ivl(x_1) \cap ex-ivl(x_2) \implies |\varphi(x_1,t) - \varphi(x_2,t)| \in \mathcal{O}(e^t)$

- Grönwall lemma
- exponential sensitivity
- same existence interval in neighborhood

- Grönwall lemma
- exponential sensitivity
- same existence interval in neighborhood

- Grönwall lemma
- exponential sensitivity
- same existence interval in neighborhood
- continuous φ at (x_1, t^*)

- Grönwall lemma
- exponential sensitivity
- same existence interval in neighborhood
- continuous φ at (x_1, t^*)
- continuity w.r.t. right-hand side of ODE

$$\dot{x}(t) = f(x(t));$$
 $\dot{x}(t) = g(x(t))$
 $|f - g| < \varepsilon \implies |\varphi_f(x_1, t) - \varphi_g(x_1, t)| \in \mathcal{O}(e^t)$

ODE $\dot{x}(t) = f(x(t))$ with f'(x) derivative of $f : \mathbb{R} \to \mathbb{R}$ Variational Equation (\mathbb{R})

$$\begin{cases} \dot{u}(t) = f'(\varphi(x_0, t)) \cdot u(t) \\ u(0) = 1 \end{cases}$$

ODE $\dot{x}(t) = f(x(t))$ with f'(x) derivative of $f : \mathbb{R} \to \mathbb{R}$ Variational Equation (\mathbb{R})

$$\begin{cases} \dot{u}(t) = f'(\varphi(x_0, t)) \cdot u(t) \\ u(0) = 1 \end{cases}$$

ODE $\dot{x}(t) =$ ive of $f: \mathbb{R} \to \mathbb{R}$ Chapter 17 Existence and Uniqueness Revisited 17.6 Differentiability of the Flow Variational Now we return to the case of an autonomous differential equation X' = F(X), where F is assumed to be C^1 . Our aim is to show that the flow $\phi(t, X) =$ $\phi_{1}(X)$ determined by this equation is a C¹ function of the two variables, and to identify $\partial \phi / \partial X$. We know, of course, that ϕ is continuously differentiable in the variable t, so it suffices to prove differentiability in X. Toward that end let X(t) be a particular solution of the system defined for $\cdot u(t)$ t in a closed interval J about 0. Suppose $X(0) = X_0$. For each $t \in J$ let $A(t) = DF_{T(t)}$ That is, A(t) denotes the Jacobian matrix of F at the point X(t). Since F is C^1 , A(t) is continuous. We define the nonautonomous linear equation U' = A(t)UThis equation is known as the variational equation along the solution X(t). From the previous section we know that the variational equation has a solution on all of I for every initial condition $U(0) = U_0$. Also, as in the autonomous case, solutions of this system satisfy the Linearity Principle. The significance of this equation is that, if Un is small, then the function $t \rightarrow X(t) + U(t)$ is a good approximation to the solution X(t) of the original autonomous equation with initial value $X(0) = X_0 + U_0$. To make this precise, suppose that $U(t,\xi)$ is the solution of the variational equation that satisfies $U(0, \xi) = \xi$ where $\xi \in \mathbb{R}^n$. If ξ and $X_0 + \xi$ belong to \mathcal{O} . let $Y(t,\xi)$ be the solution of the autonomous equation X' = F(X) that satisfies $Y(0) = X_0 + \xi$. **Proposition.** Let I be the closed interval containing 0 on which X(t) is defined. Then $\lim_{t \to 0} \frac{|Y(t,\xi) - X(t) - U(t,\xi)|}{|\xi|}$ converges to 0 uniformly for $t \in I$. This means that for every $\epsilon > 0$, there exists $\delta > 0$ such that if $|\xi| \le \delta$, then $|Y(t,\xi) - (X(t) + U(t,\xi))| \le \epsilon |\xi|$

	~ (ive of $f: \mathbb{R} \to \mathbb{R}$
ODE $\dot{x}(t) =$	404	Chapter 17 Existence and Uniqueness Revisited IVE OI I . IN \rightarrow IN
Variational	17.6	17.6 Differentiability of the Flow 405
	Now w where $\phi_t(X)$ to iden in the Tow	for all $t \in 1$. Thus as $\xi = 0$, the curve $(\rightarrow X(t) + U(t_k) \}$ is better and better approximation to $N(t_k)$. In many applications $X(t) + U(t_k)$ is used in place of $Y(t_k)$ this is conversion because $U(t_k)$ is linear in t_i . We will prove the proposition momentarily, but first we use this result to prove the following theorem.
	t in a c	Theorem. (Smoothness of Flows). The flow $\phi(t,X)$ of the autonomous system $X = F(X)$ is a C function; that is, $\partial \phi/\partial t$ and $\partial \phi/\partial X$ exist and are continuous in trans.)
	That is A(t) is	Proof: Of course, $\partial \phi(t, X)/\partial t$ is just $F(\phi_t(X))$, which is continuous. To compute $\partial \phi/\partial X$ we have, for small ξ ,
		$\phi(t, X_0 + \xi) - \phi(t, X_0) = Y(t, \xi) - X(t).$
	This ea From solutio autono The is a go	The proposition non-implies that $\lambda \phi(t, X_t)/X$ is the linear maps $\xi = U(t, \xi)$. The continuity of $\phi(X)$ is then a consequence of the continuity in initial conditions and data of olditions for the variational equation. Denoting the flow again by $\phi(X)$, we note that for each t the derivative $D\phi(X)$ of the map $d_t X \in C$ is the same as $\phi(t, X_t)/X_t$. We call this the $p_t d_t X_t$ is the flow as $\phi(X) = 0$, we note that for each $t \in C$ is the maps $D_t(X)$ of the maps $d_t X \in C$ is the same as $\phi(t, X_t)/X_t$. We call this the $p_t d_t X_t$ is the proposed to that is the maps $D_t X_t$ is the flow $D_t X_t$ is the flow $D_t X_t$ is the product of the product of the product $D_t X_t$ is the flow $D_t X_t$ is the product of the product of the product of X_t is the $D_t X_t$ is the product of the product of the product of X_t is the $D_t X_t$ is the product of the product of the product of X_t is the $D_t X_t$ is the product of the product of the product of X_t is the product of the
	equatio To n	to both of an influe value protection in the space of infeat influe of a $1 < 0$ start $X_0 \in \mathcal{O}$ the space derivative of the flow satisfies the differential equation
	equation let $Y(t) = Y(0) = 0$	$\frac{d}{dt} \left(D\phi_1(X_0) \right) = DF_{\phi_1(X_0)} D\phi_1(X_0),$
	Propo defined	with the initial condition $D\phi_0(\chi_0) = J$. Here we may regard S_0 as a parameter. An important special case is that of an equilibrium solution \tilde{X} so that $\phi_t(\tilde{X}) = \tilde{X}$. Putting $DF_{\tilde{X}} = A$, we get the differential equation
		$\frac{d}{dt}(D\phi_t(\tilde{X})) = AD\phi_t(\tilde{X}),$
	convery	with $D\phi_0(\bar{X}) = I$. The solution of this equation is
	This	$D\phi_t(\bar{X}) = \exp tA.$
		This means that, in a neighborhood of an equilibrium point, the flow is approximately linear.

ODE $\dot{x}(t) = f(x(t))$ with f'(x) derivative of $f : \mathbb{R} \to \mathbb{R}$ Variational Equation (\mathbb{R})

$$\begin{cases} \dot{u}(t) = f'(\varphi(x_0, t)) \cdot u(t) \\ u(0) = 1 \end{cases}$$

ODE $\dot{x}(t) = f(x(t))$ with f'(x) derivative of $f : \mathbb{R} \to \mathbb{R}$ Variational Equation (\mathbb{R})

$$\begin{cases} \dot{u}(t) = f'(\varphi(x_0, t)) \cdot u(t) \\ u(0) = 1 \end{cases}$$

Theorem (derivative of flow)

$$\frac{\partial \varphi}{\partial x}(x_0,t)=u(t)$$

ODE $\dot{x}(t) = f(x(t))$ with $f'(x) : \mathbb{R}$

Variational Equation (\mathbb{R})

$$\begin{cases} \dot{u}(t) = f'(\varphi(x_0, t)) \cdot u(t) \\ u(0) = 1 \end{cases}$$

ODE $\dot{x}(t) = f(x(t))$ with $Df|_{x} : \mathbb{R}^{n \times n}$

Variational Equation (\mathbb{R}^n)

$$\begin{cases} \dot{u}(t) = \mathsf{D}f|_{\varphi(x_0,t)} \cdot u(t) \\ u(0) = 1_L \end{cases}$$

ODE $\dot{x}(t) = f(x(t))$ with $Df|_{x} : \mathbb{R}^{n \times n}$

Variational Equation (\mathbb{R}^n)

$$\begin{cases} \dot{u}(t) = \mathsf{D}f|_{\varphi(x_0,t)} \cdot u(t) \\ u(0) = \mathbf{1}_L \end{cases}$$

requires: normed vector space of linear functions

- mathematics in Isabelle/HOL is type class based
 - topological, metric, vector, normed spaces are type classes

ODE $\dot{x}(t) = f(x(t))$ with $Df|_{x} : \mathbb{R}^{n \times n}$ Variational Equation (\mathbb{R}^n)

$$\begin{cases} \dot{u}(t) = \mathsf{D}f|_{\varphi(x_0,t)} \cdot u(t) \\ u(0) = \mathbf{1}_L \end{cases}$$

requires: normed vector space of linear functions

- mathematics in Isabelle/HOL is type class based
 - topological, metric, vector, normed spaces are type classes
 - type of (bounded/continuous) linear functions

Structure

Flow

Dependence on Initial Condition

Numerics

Structure

Flow

Dependence on Initial Condition

Numerics

Numerics

encode derivative of flow as linear ODE

Numerics

- encode derivative of flow as linear ODE
- [Immler, NFM2013/TACAS 2015]: verified numerical enclosures for solutions of ODEs

Numerics

- encode derivative of flow as linear ODE
- [Immler, NFM2013/TACAS 2015]: verified numerical enclosures for solutions of ODEs
- van der Pol equations:

$$\dot{x} = y$$

 $\dot{y} = (1 - x^2)y - x$
 $(x_0, y_0) = (1.25, 2.27)$

• clean interface: flow φ , *ex-ivl*

- clean interface: flow φ, ex-ivl
- hides tedious technical constructions

- clean interface: flow φ , *ex-ivl*
- hides tedious technical constructions
- employ existing verified algorithm for numerical enclosures

- clean interface: flow φ , *ex-ivl*
- hides tedious technical constructions
- employ existing verified algorithm for numerical enclosures
- general theory with concrete application:
 - Lorenz attractor
 - step towards formal verification of Tucker's proof