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The Flow of ODEs

» ordinary differential equation
(ODE)
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The Flow of ODEs

» ordinary differential equation
(ODE)

> [Immler, Holzl @ ITP 2012]:
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Formalization

» continuity and differentiability are
“natural” properties (chapter 7):
> continuous ¢
> differentiable ©

> technicalities demand “a firm and
extensive background in the
principles of real analysis.”

» proofs in chapter 17

> interface to the rest of the theory
that hides technical constructions
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The Interface: ex-ivl and

> locally Lipschitz continuous
f . Rn — Rn (on open set X)
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Flow property
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Theorem (Flow property)
(t € ex-ivli(x) \'s € ex-ivl(p(x,t))) =
o(x; t+5) = p(p(x, 1), 5)
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Technical Lemmas

» Gronwall lemma

continuous-on [0; a] g =
t

Vt. 0 < g(t) < C+K-/ g(s)ds =
0

vt e [0;a]. g(t) < C- et
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Technical Lemmas

» Gronwall lemma
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Technical Lemmas

» Gronwall lemma

> exponential sensitivity

> same existence interval in neighborhood

» continuous ¢ at (xi, t*)
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Technical Lemmas

vV vyVvyVvyy

Gronwall lemma

exponential sensitivity

same existence interval in neighborhood
continuous ¢ at (xi, t*)

continuity w.r.t. right-hand side of ODE

If —gl <e = |pr(x1,t) — @g(x1, t)| € O(e")
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Differentiability

ODE x(t) = f(x(t)) with f'(x) derivative of f : R — R

Variational Equation (R)

f'(p(x0, 1)) - u(t)

u(0)=1

u(t) =

{
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leferentlablllty

ODE x(t) =

Variational

VAR P 1L N 4 .

404 Chapter 17 Existence and Uniqueness Revisited

17.6 Differentiability of the Flow

Now we return to the case of an autonomous differential equation X' = F(X),
where F is assumed to be C1. Our aim is to show that the flow ¢(1,X) =
$:(X) determined by this equation is a C' function of the two variables, and
to identify 9/3X. We know, of course, that ¢ is continuously differentiable
in the variable 1, so it suffices to prove differentiability in X.

‘Toward that end let X(¢) be a particular solution of the system defined for
#ina closed interval | about 0. Suppose X(0) = Xo. For each t € / let

A(t) = DFx(p).

That is, A(f) denotes the Jacobian matrix of F at the point X(#). Since Fis C',
A(t) is continuous. We define the nonautonomous linear equation

U'=AMU.

“This equation s known as the variatiorial equation along the solution X().
From the previous section we know that the variational equation has a
solution on all of J for every initial condition U(0) = Up. Also, as in the
autonomous case, solutions of this system satisfy the Linearity Principle.

“The significance of this equation is that, if Up is small, then the function

£ X(1)+U()

is a good approximation to the solution X() of the original autonomous
equation with initial value X(0) = Xo + Up.

“To make this precise, suppose that U(1,£) is the solution of the variational
equation that satisfies U(0,€) = & where & € R". If& and X +£ belong to O,
et ¥(1,€) be the solution of the autonomous equation X' = F(X) that satisfies
Y(0) =

Proposition.  Let ] be the closed interval containing 0 on which X(1) is
defined. Then

i Y06 = X0 = UG,8)]

£ 3]

converges 100 uniformly for t € J. o

‘This means that for every ¢ > 0, there exists 8 > 0 such that if |€] < 8, then

1Y(1,8) — (X(1) + U(t,£))| < €l&|

iveof f:R— R

- u(t)

9/14
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¥(0) <

Propd
define

conver
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176 Differentiability of the Flow 405

forall 1 € J. Thusas & — 0, the curve £ — X(1) + U(t,£) isa better and better
approximation to Y(1,). In many applications X(1) + U(1,&) is used in place
of Y(1,£); this s convenient because U(1,) £
We will prove the proposition momentari
prove the following theorem.

ea
; but first we use this result to

Theorem. ~(Smoothness of Flows). The flow ¢ (1,X) of the autonomous
system X' = F(X) is a C' function; that is, 36/t and 3¢ /X exist and are
continuous in t and X.

Proof: OF course, (1, X)/dt is just F(@;(X)), which is continuous. To
compute 3 /8X we have, for small &,

H(1,X0+8) — $(6,X0) = ¥(1,6) = X(0).
‘The proposition now implies that a4 (1, Xo)/a X is the linear map & — U(1,).

‘The continuity of ¢/ is then a consequence of the continuity in initial
conditions and data of solutions for the variational equation.

Denoting the flow again by ,(X), we note that for each 1 the d
Déy(X) of the map ¢, at X € O is the same as 3¢ (1, X)/3X. We call this the
space derivative of the flow, as opposed to the fime derivative 0 (1, X) [d1.

‘The proof of the preceding theorem actually shows that Dy(X) is the solu-
tion of a value problem in the space of lin " For each
Xo € O the space derivative of the flow satisies the differential equation

d
4 (DOX0) = Dy 0 D (o),

with the ini
Ani
(%)

I condition D (Xp) = I. Here we may regard Xy as a parameter.
portant special case s that of an equilibrium solution X so that
X. Putting DFy = A, we get the differential equation

d .
2 (P6:(50) = ADG(X),
‘with Dgy(X) = 1. The solution of this equation is
Dy(X) = expA.

This means that, in a neighborhood of an equilibrium point, the flow is
approximately linear.

i(t)

9/14
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w  Jveof f:R—=R

406 Chapter 17 Existence and Uniqueness R

We now prove the proposition. The integral equations satisfied by X(1),
Y(1,8),and U(1,€) are

X(1) = Xo + /F\xmmx,
o

) :J@+s+/r<msnm,

o

U(LE):E+fl)fyxx~w(u(5»5))ds,

From these we get

1Y(6,6) = X(0) = U(1,6)]

]\r(ms» — F(X(9)) = DFx(U(s,6))] ds.

The Taylor approximation of F at a point Z says

FY)=

2)+DEAY = )+ RZY - Z),

where

uniformly in ¥ for ¥ in a given compact set. We apply thisto ¥
X(s). From the linearity of DFy(,) we get

Y(s6), 2=
1Y(6,6) = X(0) = U(t,8)] Sf\D"XuNY(LE\*X(S)* Us§)lds
b

+ [ IR(X(9), Y (5:6) = X(3))| ds.

Denote the leftside of this expression by g(#) and set

N = max([DExol[s€ /).
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w  Jveof f:R—=R

06 ooy e I |
wy Exercises 407
Y1,
“Then we have
8= N/xm dﬁfm(xw,ms» — Xl ds.
o ]
Fix e > 0 and pick 8 > 0 5o small that
IROKE, Y (5.6) = X()] < el Y(5.6) = X9
i Y(56) ~ X(9] < g and s .
From Section 17.3 there are constants K > 0 and 3 > 0 such that
From]| «
1¥(56) ~ X ()| < [€1e5 < 8
v flEI<diandse ).
Assume now that £] < 61. From the preceding, we find, for ¢ € /,
““ g0 5Nfgmus+]s\s\c"ds,
wher  sothat
IGE .\'f,((mls+cd;\
]
unifol R .
X(sy| for some constant C depending only on K and the length of J. Applying
Gronwall’ Inequality, we obtain
80 = CeeMlg|
if €] and §] < &. (Recall that & depends on €.) Since  is any positive
number, this shows that g(1)/1| — 0 uniformly in ¢ € J, which proves the
proposition.
b EXERCISES
1. Wite out the first few terms of the Picard iteration scheme for ¢ach of
the following initial value problems. Where possible, use any method to
(I find explict solutions. Discuss the domain of the solution.
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Differentiability
ODE x(t) = f(x(t)) with f'(x) derivative of f : R — R
Variational Equation (R)

(0)

{u(t) = f'(p(x0, 1)) - u(t)
u(0) = 1

Theorem (derivative of flow)

2 (x0,1) = u(t)

/14



Differentiability
ODE x(t) = f(x(t)) with f'(x) : R
Variational Equation (R)

{u(t) = '(o(x0, t)) - u(t)
u(0)=1
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Differentiability
ODE x(t) = f(x(t)) with Df|[, : R"*"
Variational Equation (R")

{[J(t) = Dfy(x,0)-u(t)
u(0) =1,
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Differentiability
ODE x(t) = f(x(t)) with Df|, : R
Variational Equation (R")

L'I(t) = Df’gp(xo,t)'u(t)
U(O) = 1L
requires: normed vector space of linear functions

» mathematics in Isabelle/HOL is type class based
» topological, metric, vector, normed spaces are type classes
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Differentiability
ODE x(t) = f(x(t)) with Df|, : R
Variational Equation (R")

{L’/(t) = Df | (0,00 u(t)
u(0) =1,

requires: normed vector space of linear functions

» mathematics in Isabelle/HOL is type class based

» topological, metric, vector, normed spaces are type classes
» type of (bounded/continuous) linear functions
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Numerics

» encode derivative of flow as linear ODE
> [Immler, NFM2013/TACAS 2015]:

verified numerical enclosures for solutions of ODEs
» van der Pol equations:

X=y

y=(1-x)y-x

(x0, ¥0) = (1.25,2.27)
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Conclusion

v

clean interface: flow ¢, ex-iv/

hides tedious technical constructions

v

v

employ existing verified algorithm for numerical enclosures

v

general theory with concrete application:

» Lorenz attractor
> step towards formal verification of Tucker's proof

14 /14



	Flow
	Dependence on Initial Condition
	Numerics

