
Propositions as Programs,

Proofs as Programs

Viktor Kuncak
EPFL

Laboratory for Automated Reasoning and Analysis

http://lara.epfl.ch http://leon.epfl.ch

http://lara.epfl.ch/
http://leon.epfl.ch/

EPFL

France

Lac Léman

10 minute walk from EPFL

Mont Blanc

Lac Léman

Steam Ship (1926 look and engine)

Plage du pélican

EPFL is Hiring

• MSc students (stipends, exchanges, thesis)

• PhD students: phd.epfl.ch/edic

• Postdocs (in my group)

• Faculty hiring in 2016 (check later ic.epfl.ch)

Scala programming language
Invented at EPFL by Prof. Martin Odersky http://scala-lang.org/

- hundreds of thousands of Scala programmers. Used by:

Twitter, Foursquare, Coursera , The Guardian, New York Times, Huffington
Post, UBS , LinkedIn , Meetup ,Verizon , Intel, Markus Wenzel, Lars Hupel

Libghtbend Inc. supports Scala commercially

EPFL Scala Center: industrial advisory board, courses, open source development

Apache Spark: “an open-source cluster computing framework with in-memory
processing to speed analytic applications up to 100 times faster compared to
technologies on the market today. Developed in the AMPLab at UC Berkeley,
Apache Spark can help reduce data interaction complexity, increase processing
speed and enhance mission-critical applications with deep intelligence.”

“…IBM is making a major commitment to the future of Apache Spark, with a
series of initiatives announced today. IBM will offer Apache Spark as a service
on Bluemix; commit 3,500 researchers to work on Spark-related projects; donate
IBM SystemML to the Spark ecosystem; and offer courses to train 1 million data
scientists and engineers to use Spark.”

http://scala-lang.org/
https://en.wikipedia.org/wiki/Twitter
https://en.wikipedia.org/wiki/Foursquare_(service)
https://en.wikipedia.org/wiki/Coursera
https://en.wikipedia.org/wiki/The_Guardian
https://en.wikipedia.org/wiki/New_York_Times
https://en.wikipedia.org/wiki/Huffington_Post
https://en.wikipedia.org/wiki/UBS
https://en.wikipedia.org/wiki/LinkedIn
https://en.wikipedia.org/wiki/Meetup_(website)
https://en.wikipedia.org/wiki/Verizon
http://www.informationweek.com/big-data/big-data-analytics/spark-promoter-databricks-should-let-software-shine/a/d-id/1319539?itc=edit_in_body_cross
http://www.informationweek.com/software/enterprise-applications/ibm-bluemix-welcomes-microsofts-net/d/d-id/1320357

Leon:
a system to verify Scala programs

Try at http://leon.epfl.ch /doc/

Check http://github.com/epfl-lara/

http://leon.epfl.ch/
http://github.com/epfl-lara/

Thanks to Leon Contributors

M. Antognini
R. Blanc
S. Gruetter
L. Hupel
E. Kneuss
M. Koukoutos
R. K. Madhavan
M. Mayer
R. Ruetschi
S. Stucki
P. Suter
N. Voirol

R. Edelmann

E. Darulova

A.S. Koeksal

S. Kulal

I. Kuraj

R. Piskac

G. Schmid

Simple Binary Search Trees in Leon
import leon.lang._; import leon.collection._
sealed abstract class Tree {

def content: Set[BigInt] = this match {
case Leaf() => Set.empty[BigInt]
case Node(l, v, r) => l.content ++ Set(v) ++ r.content

}

def insert(value: BigInt): Node = (this match {
case Leaf() => Node(Leaf(), value, Leaf())
case Node(l, v, r) =>

if (v < value) Node(l, v, r.insert(value))
else if (v > value) Node(l.insert(value), v, r)
else Node(l, v, r)

}) ensuring(_.content == content ++ Set(value))

def contains(value: BigInt): Boolean = (this match {
case Leaf() => false
case Node(l, v, r) =>

if (v == value) true
else if (v < value) r.contains(value)
else l.contains(value)

}) ensuring(_ == (content contains value))
}
case class Leaf() extends Tree
case class Node(left: Tree, value: BigInt, right: Tree) extends Tree {
require(forall((x:BigInt) => (left.content contains x) ==> x < value) &&

forall((x:BigInt) => (right.content contains x) ==> value < x)) }

Writing Properties and Lemmas

We write universally quantified properties as
functions taking arguments, returning Boolean:

def containsInserted(value: BigInt): Boolean = {
insert(value).contains(value)

} holds
holds is a shorthand for:

ensuring(res => res==true)
res binds to the result of the function
this – an implicit receiver parameter, desugared into explicit one

Proves immediately: decision procedure for (finite)
sets after unfolding ensuring of insert and contains

Ɐ this:Tree. Ɐ value:Z. contains(insert(this, value), value)

How Leon Proves Expression Valid
(by default)

Repeat:
• Pretend user functions are arbitrary functions and

check if valid using an SMT solver (Z3, CVC4)
– if there is a counterexample not relying on any

user function, report it as a real counterexample, else:

• Unfold body and the corresponding ensuring spec,
once for each user function application

“Bounded model checking for recursive functions”
“k-induction on termination relation for defined functions”

On top of this, we add quantifier instantiation, and modeling
higher-order functions using dynamic dispatch

Example: List Size
sealed abstract class List
case class Cons(head:BigInt,tail:List) extends List
case object Nil extends List

def size(l : List) : BigInt = (l match {
case Nil => BigInt(0)
case Cons(_, xs) => 1 + size(xs)

})

def notFifteen(l:List): Boolean = {
size(l) != 15

} holds

def aboveZero(l:List): Boolean = {
size(l) >= 0

} holds

Without postcondition on size, fails to prove

 counterexample found fast

Example: List Size
sealed abstract class List
case class Cons(head:BigInt,tail:List) extends List
case object Nil extends List

def size(l : List) : BigInt = (l match {
case Nil => BigInt(0)
case Cons(_, xs) => 1 + size(xs)

}) ensuring(_ >= 0)

def notFifteen(l:List): Boolean = {
size(l) != 15

} holds

def aboveZero(l:List): Boolean = {
size(l) >= 0

} holds

Without postcondition on size, fails to prove

 counterexample found fast

 essential postcondition for size

Append Associativity

sealed abstract class List {
def ++(that: List): List = (this match {

case Nil => that
case Cons(x, xs) => Cons(x, xs ++ that)

}) ensuring { res =>
(res.size == this.size + that.size) &&
((that == Nil) ==> (res == this))

}
def size : BigInt = (this match {

case Nil => BigInt(0)
case Cons(_, t) => 1 + t.size

}) ensuring(res => res >= 0)
}
case class Cons(head: BigInt, tail: List)

extends List
case object Nil extends List

@induct

def appendAssoc(l1: List,
l2: List,
l3: List)= {

(l1 ++ l2) ++ l3 == l1 ++ (l2 ++ l3)

} holds

Append Associativity Explicitly

def appendAssocExp(l1: List,
l2: List,
l3: List): Boolean = {

(l1 match {

case Cons(h,t) => appendAssocExp(t, l2, l3)

case _ => true

}) &&

((l1 ++ l2) ++ l3 == l1 ++ (l2 ++ l3))

} holds

Append Associativity with Sugar

def appendAssocExp(l1: List,
l2: List,
l3: List): Boolean = {

((l1 ++ l2) ++ l3 == l1 ++ (l2 ++ l3)) because
(l1 match {

case Cons(h,t) => appendAssocExp(t, l2, l3)

case _ => true

})

} holds

With Refined Sugar

def appendAssocExp(l1: List, l2: List, l3: List)= {

(l1 ++ l2) ++ l3 == l1 ++ (l2 ++ l3)

} holds because
(l1 match {

case Cons(h,t) => appendAssocExp(t, l2, l3)

case _ => true

})

Expression to Stack Machine Compiler

def compileInterpretEquivalenceLemma[A](e: ExprTree[A], S: List[A]) = {
run(compile(e), S) == interpret(e) :: S

} holds because
(e match {

case Const(c) => true
case Op(e1, e2) =>

val c1 = compile(e1)
val c2 = compile(e2)
runAppendLemma((c1 ++ c2), Cons[ByteCode[A]](OpInst[A](), Nil()), S)&&

runAppendLemma(c1, c2, S) &&
compileInterpretEquivalenceLemma(e1, S) &&
compileInterpretEquivalenceLemma(e2, Cons[A](interpret(e1), S)) })

By structural induction on e prove
Ɐ S. run(compile(e), S) == interpret(e) :: S

Proof Domain-Specific Language
Course project: S. Stucki and M. Antognini

def reverseReverse[T](l: List[T]): Boolean = {

l.reverse.reverse == l

}.holds because {

l match {

case Nil() => trivial

case Cons(x, xs) => {

(xs.reverse :+ x).reverse ==| snocReverse[T](xs.reverse, x) |

x :: xs.reverse.reverse ==| reverseReverse[T](xs) |

(x :: xs)

}.qed

}}

Implemented entirely as a library (no change to Leon!):
implicit conversion to new type that has additional method
such as ==|
https://github.com/epfl-lara/leon/tree/master/library/leon/proof

http://leondev.epfl.ch/doc/neon.html

https://github.com/epfl-lara/leon/tree/master/library/leon/proof
http://leondev.epfl.ch/doc/neon.html

Resource Verification Problem

def sortedIns(e: BigInt, l: List)= {

require(isSorted(l))

l match {

case Nil() => Cons(e, Nil())

case Cons(x,xs) =>

if (x <= e)

Cons(x, sortedIns(e, xs))

else

Cons(e, l)

}

} ensuring(res =>

// completes in O (size(l)) time/space
)

Specifying Resource Bounds

Ensuring clauses with holes to be inferred

def sortedIns(e: BigInt, l: List)= {

require(isSorted(l))

l match {

case Nil() => Cons(e, Nil())

case Cons(x,xs) =>

if (x <= e)

Cons(x, sortedIns(e, xs))

else

Cons(e, l)

}

} ensuring(res => time <= ?*size(l)+? && stack <= ?*size(l)+?)
time <= a*size(l)+b && stack <= c*size(l)+d

AVL tree tdelete ≤ a*height(t)+b

Red-black tree tinsert ≤ a*blackHeight(t)+b

Leftist Heap trem ≤ a*rightHeight(t.left)+b

Binomial Heap tremove ≤ a*numTrees(h)+

b*minChildren(h)+c

Insertion Sort tsort ≤ a*size(l)*size(l)+b

Example Programs & Templates

AVL tree tdelete ≤ 145*height(t)+19

Red-black tree tinsert ≤ 178*blackHeight(t)+96

Leftist Heap trem ≤ 44*rightHeight(t.left)+5

Binomial Heap tremove ≤ 70*numTrees(h)+

31*minChildren(h)+22

Insertion Sort tsort ≤ 9*size(l)*size(l)+2

Bounds Inferred by the Tool

Red-black tree
2blackHeight(t) ≤ size(t)+1

Leftist Heap 2rightHeight(t) ≤ size(t)+1

Binary inc.
(Amortized)

tinc ≤ 15*nop+3

Also Inferred

Implies logarithmic time for access

Extended to Lazy Evaluation and
Memoization

Verified about 10k lines - correctness and resource bounds

• Heaps: Leftist heap, binomial heap
• Sorting algorithms
• Balanced search trees
• Tries
• Stream library
• Cyclic streams: fibonacci stream, hamming stream
• Lazy persistent data structures: real-time queues, deques
• Dynamic programming algorithms: packrat parsing instance,

Viterbi algorithm

We used proof hints in the more difficult examples

Example Case Study: ConcTrees

• Work of a PhD student of Martin Odersky, basis of a
parallel collection data structure

Aleksandar Prokopec, Martin Odersky:
Conc-Trees for Functional and Parallel
Programming. LCPC 2015: 254-268

• Part of it explained in the last week of the Coursera
course on parallel programming in Scala:

https://www.coursera.org/learn/parprog1

• Formalized a lazy data structure and its time bounds
• 800 lines of Leon for data structure operations,

specifications, proof hints

http://dblp.uni-trier.de/pers/hd/o/Odersky:Martin
http://dblp.uni-trier.de/db/conf/lcpc/lcpc2015.html#ProkopecO15
https://www.coursera.org/learn/parprog1
https://www.coursera.org/learn/parprog1

Expressive Framework

• If a lemma application appears in formula, it will
be eventually unfolded (fair unfolding)

• To request Leon to consider a set of lemmas:
– Define MyRules datatype: a case for each lemma
– Define function that traverses List[MyRules] and

instantiates corresponding lemma
– Add List[MyRules] as an extra parameter to the

formula that needs to be proven
– Parameters must encode all possible expressions to

which lemmas is to be applied (!)

• Even if it gives provability, having many
unfoldings makes solving very slow

What we cannot do?

• Cannot control what is not given to SMT solver
– can: add lemma instances (must give arguments)

– harder: tell it to ignore some fact as irrelevant
(e.g. hide proof part of “because”, prevent unfolding)
part of the problem: for induction to work, want &&

– smaller modifications to system can address this

• Cannot write general-purpose tactic that proves a
formula from a given decidable class
– No way to programmatically inspect formulas and

decide which rules/lemmas to instantiate, which not

– Solution?

Future: Reflection and LCF Approach

Ongoing work by EPFL PhD student Romain Edelmann

• Reflect Leon’s terms and formulas in Leon user space
as algebraic data types

• Introduce private Theorem type; stores a term

• If t:Theorem, then t.term gives formula
(cannot go arbitrarily in the other direction!)

• Inspect theorems: t.term match {…}
– can write tactics

• Allow terminating computations to compute theorems
using a trusted kernel of formula constructing
functions

Envisioned And Introduction

• Can find out the resulting formula by looking
at ensuring alone!

• Once we check the body and prove it
terminates, we can skip executing it

• Avoid re-running such Theorem-producing
computations after we verify them, just look
up the value according to ensuring

def andIntro(a: Theorem, b: Theorem): Theorem = {
???[Theorem]

} ensuring(_.term == And(a.term,b.term))

Possible Implication Introduction?

• Possible because language used to compute
theorems is terminating and free of side effects
– Enforced using Leon’s termination and verification

(allows many forms of recursion)

• To avoid re-evaluation, need predictable support
for contracts used for kernel rules like above

def impIntro(hyp: Term, concl: Term,
p: Theorem => Theorem): Theorem={

require(forall((t:Theorem) =>
(t.term==hyp) ==> p(t).term==concl))

???[Theorem]
} ensuring(_.term == Implies(hyp, concl))

Two Proof Languages

• Proofs as Leon terms of Boolean type

– for (readable?) proofs of specific theorems

• Proofs as Leon programs computing Theorems

– tactics, decision procedures

– larger developments

In both cases, proofs are programs

Program synthesis techniques apply to proofs

a) Check assertion while
program p runs: C(i,p(i))

c) Constraint
programming: once i is
known, find o to satisfy a
given constraint: find o
such that C(i,o)

b) Verify whether program
always meets the spec:

i. C(i,p(i))

d) Synthesis: solve C
symbolically to obtain
program p that is correct
by construction, for all
inputs: find p such that
i.C(i,p(i)) i.e. p  C

repair

Activities Supported in Leon

Recent work: verify time and space, quantifiers, state,
higher-order functions, termination, Isabelle linkup

Insertion Sort Synthesis
def content(l: List): Set[BigInt] = l match {

case Nil => Set()

case Cons(i, t) => Set(i) ++ content(t) }

def isSorted(l: List): Boolean = l match {

case Nil => true

case Cons(_,Nil) => true

case Cons(x1, Cons(x2, rest)) =>

x1 < x2 && isSorted(Cons(x2,rest)) }

def sort(l: List) = {

???[List]

} ensuring((res:List) =>

isSorted(res) &&
content(res) == content(l))

def sInsert(x: BigInt, l: List): List = {

require(isSorted(l))

l match {

case Nil => Cons(x, Nil)

case Cons(e, rest) if (x == e) => l

case Cons(e, rest) if (x < e) =>
Cons(x, Cons(e,rest))

case Cons(e, rest) if (x > e) =>
Cons(e, sInsert(x,rest))

}

} ensuring {(res:List) =>

isSorted(res) &&
content(res) == content(l) ++ Set(x)}

Isabelle Linkup

• Developed by Lars Hupel:
Translating Scala Programs to Isabelle/HOL
(System Description), by Lars Hupel and V.K.
International Joint Conference on Automated
Reasoning (IJCAR), 2016.

• Largely orthogonal to SMT solver approach
discussed in this talk; we can use them together
– Maps Leon type and function definitions into Isabelle’s

datatypes, recursive functions, and lemmas

– Invokes Isabelle to prove lemmas (accepts proof hints)

– Maps e.g. Leon’s list operations to those of Isabelle

http://lara.epfl.ch/~kuncak/papers/HupelKuncak16TranslatingScalaProgramsIsabelleHOLSystemDescription.pdf

Conclusion

Leon started as automated verification system
– Also used for research in synthesis and repair

Functions are proved (terminating and)
valid for all arguments
Lemmas are functions returning Boolean
To do more difficult proofs, we help Leon:

– conjoin goals with applications of useful lemmas
– proof by induction: invoke property recursively
– Scala DSL for proofs: nice equational reasoning syntax

Experience in proofs of data structures, some dist. protocols
To do much more, we are adding reflection
Open positions at EPFL (MSc, PhD, postdoc, faculty)

