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• Digraph with capacities
• Source (s) and sink (t)

• Flow from s to t
• Not exceeding capacities
• Inflow = outflow (except s,t)

• Finding maximum flow
• Incr. along augmenting path

• May need to take back flow
• To increase overall value

• Flow is maximal now
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Residual Graph
of Network and Flow

• Flow that can be moved between nodes
• By increasing or taking back flow

• Augmenting path: s-t path in residual graph
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Ford-Fulkerson Method

• Theorem: Flow is maximal iff there is no augmenting path.
• Corollary of Min-Cut/Max-Flow theorem

• Greedy algorithm to compute maximum flow

set flow to zero
while exists augmenting path

augment flow along path

• Partial correctness: obvious
• Termination: only for integer/rational capacities
• Edmonds/Karp: choose shortest augmenting path

• O(VE) iterations for real-valued capacities
• Using BFS to find path: O(VE2) algorithm
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Our Contributions
Verified in Isabelle/HOL

• Min-Cut/Max-Flow Theorem
• Human-readable proof
• Closely following Cormen et al.

• Ford-Fulkerson and Edmonds Karp algorithms
• Human-readable presentation of algorithms
• Proved correctness and complexity

• Efficient Implementation
• Using stepwise refinement down to Imperative/HOL
• Isabelle’s code generator exports to SML
• Benchmark: comparable to Java (from Sedgewick et al.)

5 / 16



Our Contributions
Verified in Isabelle/HOL

• Min-Cut/Max-Flow Theorem
• Human-readable proof
• Closely following Cormen et al.

• Ford-Fulkerson and Edmonds Karp algorithms
• Human-readable presentation of algorithms
• Proved correctness and complexity

• Efficient Implementation
• Using stepwise refinement down to Imperative/HOL
• Isabelle’s code generator exports to SML
• Benchmark: comparable to Java (from Sedgewick et al.)

5 / 16



Our Contributions
Verified in Isabelle/HOL

• Min-Cut/Max-Flow Theorem
• Human-readable proof
• Closely following Cormen et al.

• Ford-Fulkerson and Edmonds Karp algorithms
• Human-readable presentation of algorithms
• Proved correctness and complexity

• Efficient Implementation
• Using stepwise refinement down to Imperative/HOL
• Isabelle’s code generator exports to SML
• Benchmark: comparable to Java (from Sedgewick et al.)

5 / 16



Human-Readable Proofs
• Used Isar proof language

Proof fragment from Cormen at al.:

(f ↑ f ′)(u, v) = f (u, v) + f ′(u, v)− f ′(v , u) (definition of ↑)
≤ f (u, v) + f ′(u, v) (because flows are nonnegative)

≤ f (u, v) + cf (u, v) (capacity constraint)

= f (u, v) + c(u, v)− f (u, v) (definition of cf )

= c(u, v).

Our Isar version:

have (f↑f’)(u,v) = f(u,v) + f’(u,v) - f’(v,u)
by (auto simp: augment_def)

also have . . . ≤ f(u,v) + f’(u,v) using f’.capacity_const by auto
also have . . . ≤ f(u,v) + cf(u,v) using f’.capacity_const by auto
also have . . . = f(u,v) + c(u,v) - f(u,v)
by (auto simp: residualGraph_def)

also have . . . = c(u,v) by auto
finally show (f↑f’)(u, v) ≤ c(u, v) .
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And Automatic Proofs
• Cormen et al. also give more complicated proofs

• We sometimes chose to use more automatic proofs

• Using some simplifier setup
• And auxiliary statements
• We reduce the displayed proof’s complexity

First part of proof that |f ↑ f ′| = |f |+ |f ′|:
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And Automatic Proofs
• Cormen et al. also give more complicated proofs
• We sometimes chose to use more automatic proofs

• Using some simplifier setup
• And auxiliary statements
• We reduce the displayed proof’s complexity

lemma augment_flow_value: Flow.val c s (f↑f’) = val + Flow.val cf s f’
proof -

interpret f’’: Flow c s t f↑f’ using augment_flow_presv[OF assms] .
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And Automatic Proofs
• Cormen et al. also give more complicated proofs
• We sometimes chose to use more automatic proofs

• Using some simplifier setup

• And auxiliary statements
• We reduce the displayed proof’s complexity

note setsum_simp_setup[simp] =
sum_outgoing_alt[OF capacity_const] s_node
sum_incoming_alt[OF capacity_const]
cf.sum_outgoing_alt[OF f’.capacity_const]
cf.sum_incoming_alt[OF f’.capacity_const]
sum_outgoing_alt[OF f’’.capacity_const]
sum_incoming_alt[OF f’’.capacity_const]
setsum_subtractf setsum.distrib
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And Automatic Proofs
• Cormen et al. also give more complicated proofs
• We sometimes chose to use more automatic proofs

• Using some simplifier setup
• And auxiliary statements

• We reduce the displayed proof’s complexity

have aux1: f’(u,v) = 0 if (u,v)/∈E (v,u)/∈E for u v
proof -

from that cfE_ss_invE have (u,v)/∈cf.E by auto
thus f’(u,v) = 0 by auto

qed
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And Automatic Proofs
• Cormen et al. also give more complicated proofs
• We sometimes chose to use more automatic proofs

• Using some simplifier setup
• And auxiliary statements
• We reduce the displayed proof’s complexity

have f’’.val = (
∑

u∈V. augment f’ (s, u) - augment f’ (u, s))
unfolding f’’.val_def by simp

also have . . . = (
∑

u∈V. f (s, u) - f (u, s) + (f’ (s, u) - f’ (u, s)))
— Note that this is the crucial step of the proof, which Cormen et al. leave as an exercise.
by (rule setsum.cong) (auto simp: augment_def no_parallel_edge aux1)

also have . . . = val + Flow.val cf s f’
unfolding val_def f’.val_def by simp

finally show f’’.val = val + f’.val .
qed
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Main Result

• Finally, we arrive at

context NFlow begin
...
theorem ford_fulkerson:

isMaxFlow f←→ (@ p. isAugmentingPath p)
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Ford-Fulkerson Method
• We use the Isabelle Refinement Framework

• Based on nondeterminism monad + refinement calculus
• Provides proof tools + Isabelle Collection Framework
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Ford-Fulkerson Method
• We use the Isabelle Refinement Framework

• Based on nondeterminism monad + refinement calculus
• Provides proof tools + Isabelle Collection Framework

definition ford_fulkerson_method ≡ do {
let f0 = (λ(u,v). 0);

(f,brk)← while (λ(f,brk). ¬brk)
(λ(f,brk). do {

p← selectp p. is_augmenting_path f p;
case p of

None⇒ return (f,True)
| Some p⇒ return (augment c f p, False)

})
(f0,False);

return f
}
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Correctness Proof
• First, we add some assertions and invariant annotations

definition fofu ≡ do {
let f0 = (λ_. 0);

(f,_)← whilefofu_invar
(λ(f,brk). ¬brk)
(λ(f,_). do {
p← find_augmenting_spec f;
case p of
None⇒ return (f,True)

| Some p⇒ do {
assert (p6=[]);
assert (NFlow.isAugmentingPath c s t f p);
let f = NFlow.augment_with_path c f p;
assert (NFlow c s t f);
return (f, False)

}
})
(f0,False);

assert (NFlow c s t f);
return f

}

• Then, we use the VCG to prove partial correctness
• This also yields correctness of the unannotated version
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Correctness Proof
• First, we add some assertions and invariant annotations
• Then, we use the VCG to prove partial correctness

theorem fofu_partial_correct: fofu ≤ (spec f. isMaxFlow f)

unfolding fofu_def find_augmenting_spec_def
apply (refine_vcg)
apply (vc_solve simp:

zero_flow
NFlow.augment_pres_nflow
NFlow.augmenting_path_not_empty
NFlow.noAugPath_iff_maxFlow[symmetric])

done

• This also yields correctness of the unannotated version
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Correctness Proof
• First, we add some assertions and invariant annotations
• Then, we use the VCG to prove partial correctness
• This also yields correctness of the unannotated version

theorem (in Network) ford_fulkerson_method ≤ (spec f. isMaxFlow f)
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Edmonds-Karp Algorithm
• Specify shortest augmenting path

definition find_shortest_augmenting_spec f ≡
assert (NFlow c s t f) >>
(selectp p. Graph.isShortestPath (residualGraph c f) s p t)

• This is a refinement of augmenting path
• Replace in algorithm
• New algorithm refines original one
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Edmonds-Karp Algorithm
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• This is a refinement of augmenting path
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definition edka_partial ≡ do {
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p← find_shortest_augmenting_spec f;
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Edmonds-Karp Algorithm
• Specify shortest augmenting path
• This is a refinement of augmenting path
• Replace in algorithm
• New algorithm refines original one

lemma edka_partial_refine[refine]: edka_partial ≤ fofu

unfolding find_shortest_augmenting_spec_def find_augmenting_spec_def
apply (refine_vcg)
apply (auto

simp: NFlow.shortest_is_augmenting
dest: NFlow.augmenting_path_imp_shortest)

done
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Total Correctness and Complexity
• Next, we define a total correct version

definition edka_partial ≡ do {
...
(f,_)← whilefofu_invar

...

• And show refinement
• We also show O(VE) bound on loop iterations

• Instrumenting the loop with a counter
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theorem edka_refine[refine]: edka ≤ edka_partial
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Towards Efficient Implementation

Several refinement steps lead to final implementation:

1 Update residual graphs instead of flows
2 Implement augmentation (iterate over path twice)
3 Use BFS to determine shortest augmenting path
4 Implement successor function on residual graph

• Using pre-computed map of adjacent nodes in network
5 Imperative Data Structures

• Tabulate capacity matrix and adjacency map to array
• Maintain residual graph in array

6 Export to SML code

13 / 16



Towards Efficient Implementation

Several refinement steps lead to final implementation:
1 Update residual graphs instead of flows

2 Implement augmentation (iterate over path twice)
3 Use BFS to determine shortest augmenting path
4 Implement successor function on residual graph

• Using pre-computed map of adjacent nodes in network
5 Imperative Data Structures

• Tabulate capacity matrix and adjacency map to array
• Maintain residual graph in array

6 Export to SML code

13 / 16



Towards Efficient Implementation

Several refinement steps lead to final implementation:
1 Update residual graphs instead of flows
2 Implement augmentation (iterate over path twice)

3 Use BFS to determine shortest augmenting path
4 Implement successor function on residual graph

• Using pre-computed map of adjacent nodes in network
5 Imperative Data Structures

• Tabulate capacity matrix and adjacency map to array
• Maintain residual graph in array

6 Export to SML code

13 / 16



Towards Efficient Implementation

Several refinement steps lead to final implementation:
1 Update residual graphs instead of flows
2 Implement augmentation (iterate over path twice)
3 Use BFS to determine shortest augmenting path

4 Implement successor function on residual graph
• Using pre-computed map of adjacent nodes in network

5 Imperative Data Structures
• Tabulate capacity matrix and adjacency map to array
• Maintain residual graph in array

6 Export to SML code

13 / 16



Towards Efficient Implementation

Several refinement steps lead to final implementation:
1 Update residual graphs instead of flows
2 Implement augmentation (iterate over path twice)
3 Use BFS to determine shortest augmenting path
4 Implement successor function on residual graph

• Using pre-computed map of adjacent nodes in network

5 Imperative Data Structures
• Tabulate capacity matrix and adjacency map to array
• Maintain residual graph in array

6 Export to SML code

13 / 16



Towards Efficient Implementation

Several refinement steps lead to final implementation:
1 Update residual graphs instead of flows
2 Implement augmentation (iterate over path twice)
3 Use BFS to determine shortest augmenting path
4 Implement successor function on residual graph

• Using pre-computed map of adjacent nodes in network
5 Imperative Data Structures

• Tabulate capacity matrix and adjacency map to array
• Maintain residual graph in array

6 Export to SML code

13 / 16



Towards Efficient Implementation

Several refinement steps lead to final implementation:
1 Update residual graphs instead of flows
2 Implement augmentation (iterate over path twice)
3 Use BFS to determine shortest augmenting path
4 Implement successor function on residual graph

• Using pre-computed map of adjacent nodes in network
5 Imperative Data Structures

• Tabulate capacity matrix and adjacency map to array
• Maintain residual graph in array

6 Export to SML code

13 / 16



Assembling Overall Correctness Proof
• Correctness statement

• As Hoare Triple using Separation Logic

context Network_Impl begin
theorem edka_imp_correct:
assumes Graph.V c ⊆ {0..<N}
assumes is_adj_map am
shows

<emp>
edka_imp c s t N am

<λfi. ∃A f. is_rflow N f fi * ↑(isMaxFlow f)>t

• Proof by transitivity
• Also integrated with check for valid network

• Input: list of edges, source node, sink node

14 / 16



Assembling Overall Correctness Proof
• Correctness statement

• As Hoare Triple using Separation Logic
• Proof by transitivity

proof -
interpret Edka_Impl by unfold_locales fact

note edka5_refine[OF ABS_PS]
also note edka4_refine
also note edka3_refine
also note edka2_refine
also note edka_refine
also note edka_partial_refine
also note fofu_partial_correct
finally have edka5 am ≤ SPEC isMaxFlow .
from hn_refine_ref[OF this edka_imp_refine]
show ?thesis

by (simp add: hn_refine_def)
qed

• Also integrated with check for valid network
• Input: list of edges, source node, sink node
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Assembling Overall Correctness Proof
• Correctness statement

• As Hoare Triple using Separation Logic

• Proof by transitivity
• Also integrated with check for valid network

• Input: list of edges, source node, sink node

theorem
fixes el defines c ≡ ln_α el
shows

<emp>
edmonds_karp el s t

<
λNone⇒ ↑(¬ln_invar el ∨ ¬Network c s t)
| Some (_,_,N,cf)⇒
↑(ln_invar el ∧ Network c s t ∧ Graph.V c ⊆ {0..<N})

* (∃A f. is_rflow c s t N f cf * ↑(Network.isMaxFlow c s t f))
>t
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Benchmarking

• Against Java version of Sedgewick et al., on random networks
• Two data sets: Sparse (D = 0.02) and dense (D = 0.25) graphs

• Sparse: Java is (slightly) faster
• Dense: we are (slightly) faster
• Supposed reason: different 2-dimensional array implementations
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tim
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Java, sparse
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Conclusion

• Proof of Min-Cut/Max-Flow Theorem
• Human readable proofs following textbook presentation
• Showing off Isar proof language

• Verified Edmonds-Karp algorithm
• From abstract pseudo-code like version ...
• ... down to imperative implementation
• Showing off Isabelle Refinement Framework

• Our implementation is pretty efficient

Available in Archive of Formal Proofs
www.isa-afp.org/entries/EdmondsKarp_Maxflow.shtml

www.isa-afp.org/entries/Refine_Imperative_HOL.shtml

Questions?
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