Equational Reasoning with Applicative Functors

Andreas Lochbihler Joshua Schneider
Institute of Information Security
ETHzürich

Equational Reasoning with Applicative Functors
 Andreas Lochbihler Joshua Schneider
 Institute of Information Security

ETHzürich

model effects

Contributions

- Isabelle/HOL package for reasoning about applicative effects

```
applicative state
for
    pure: pure_state
    ap: ap_state
proof (prove)
goal (4 subgoals):
    1. \f x. pure fopure x = pure (
    2. }\Lambdagffx.pure (\lambdagfx.g(f x))
    3. }\Lambdax.\operatorname{pure (\lambdax, x)\diamondx=x
    4. \fx. f\diamond pure x= pure (\lambdaf. f
    functor registration
```


- Meta theory formalised and algorithms verified
- Used in several examples and case studies

Task: Label a binary tree with distinct numbers!

$\xrightarrow[\substack{\text { datatype } \alpha \text { tree }=\\ \mathrm{L} \alpha \mid \mathrm{N}(\alpha \text { tree })(\alpha \text { tree })}]{\mathrm{lb\mid}}$

Task: Label a binary tree with distinct numbers!

lbl :: α tree \Rightarrow nat tree

Task: Label a binary tree with distinct numbers!

lb| :: α tree \Rightarrow nat tree state
where
α state $=$ nat $\Rightarrow \alpha \times$ nat

```
monadic
    \alpha M = \alpha state
return :: \alpha=>\alpha M
(>>) ::\alphaM=>(\alpha=>\betaM)=>\betaM
lb| (L _) = fresh>> > > . return (L x')
lbl (N/r)=
    lb| I>> \lambda\mp@subsup{I}{}{\prime}.||| r>> \lambdar'. return (N I' r')
```


Task: Label a binary tree with distinct numbers!

lb| :: α tree \Rightarrow nat tree state
where
α state $=$ nat $\Rightarrow \alpha \times$ nat

```
monadic
\alpha M = \alpha state
return :: \alpha=>\alpha M
(>>) ::\alphaM=>(\alpha=>\betaM)=>\betaM
lb| (L _) = fresh>> > > . return (L x')
lbl (N/r)=
    lb| I>>\lambda生. lbl r>> }\lambda\mp@subsup{r}{}{\prime}.\mathrm{ return (N I' r')
```

applicative $\quad \alpha F=\alpha$ state pure :: $\alpha \Rightarrow \alpha F$
$(\diamond) \quad::(\alpha \Rightarrow \beta) F \Rightarrow \alpha F \Rightarrow \beta F$
lb| (L_{-}) = pure $\mathrm{L} \diamond$ fresh lbl $(\mathrm{N} / r)=$ pure $\mathrm{N} \diamond \mathrm{lb\mid} / \diamond \mathrm{lb\mid} r$

Labelling trees and lists

$$
\begin{aligned}
& \text { leaves }:: \alpha \text { tree } \Rightarrow \alpha \text { list } \\
& \text { leaves }(\mathrm{L} x)=x \cdot[] \\
& \text { leaves }(\mathrm{N} / r)=\text { leaves } I+\text { leaves } r
\end{aligned}
$$

lbl' :: α list \Rightarrow nat list state $\mathrm{lb\mid}^{\prime}$ [] = pure []
$\mid \mathrm{bl}^{\prime}(-\times x)=$ pure $(\cdot) \diamond$ fresh $\diamond \mid \mathrm{lb} \mathbf{I}^{\prime} \times s$

Labelling trees and lists

Lemma: pure leaves $\diamond \mathrm{lb\mid} t=\mathrm{Ib\mid}^{\prime}$ (leaves t)
Proof by induction on t.
Case $\mathrm{L} x$: pure leaves $\diamond \mathrm{Ib\mid}(\mathrm{~L} x) \quad=|\mathrm{lb}|^{\prime}($ leaves $(\mathrm{L} x))$

Labelling trees and lists

Lemma: pure leaves $\diamond \mathrm{lb\mid} t=\mathrm{Ib\mid}^{\prime}$ (leaves t)
Proof by induction on t.
Case $L x$: pure leaves $\diamond \mathrm{Ib}(\mathrm{L} x) \quad=\mathrm{lb\mid}^{\prime}$ (leaves $(\mathrm{L} x)$)
pure leaves $\diamond($ pure $\mathrm{L} \diamond$ fresh $)=$ pure $(\cdot) \diamond$ fresh \diamond pure []
$\forall x$. leaves $(\quad \mathrm{L} \quad x)=\quad(\cdot) \quad x$ []

Labelling trees and lists

Lemma: pure leaves $\diamond \mathrm{lb\mid} t=\mathrm{Ib\mid}^{\prime}$ (leaves t)
Proof by induction on t.
Case $L x:$ pure leaves $\diamond \mathrm{lbl}(\mathrm{L} x) \quad=\mathrm{lb\mid}^{\prime}$ (leaves $(\mathrm{L} x)$)
pure leaves $\diamond($ pure $\mathrm{L} \diamond$ fresh $)=$ pure $(\cdot) \diamond$ fresh \diamond pure [] holds by the applicative laws \uparrow
$\forall x$. leaves $(\quad \mathrm{L} \quad x)=\quad(\cdot) \quad x$ []

Labelling trees and lists

Lemma: pure leaves $\diamond \mathrm{lb\mid} t=\mathrm{Ib\mid}^{\prime}$ (leaves t)
Proof by induction on t.
Case $L x$: pure leaves $\diamond \mathrm{Ib}(\mathrm{L} x) \quad=\mathrm{lb\mid}^{\prime}$ (leaves $(\mathrm{L} x)$)
pure leaves $\diamond($ pure $\mathrm{L} \diamond$ fresh $)=$ pure $(\cdot) \diamond$ fresh \diamond pure []
holds by the applicative laws \uparrow apply applicative_lifting
$\forall x$. leaves $(\quad \mathrm{L} \quad x)=\quad(\cdot) \quad x$ []

Lifting equations over applicative functors

Lifting equations over applicative functors

Lifting equations over applicative functors

Lifting equations over applicative functors

[Hinze 2010]

Canonical form

[McBride, Paterson] applicative expression \mapsto pure $f \diamond x_{1} \diamond x_{2} \diamond \ldots \diamond x_{n}$

Lifting equations over applicative functors

Canonical form pure function opaque arguments
applicative expression \mapsto pure $f \diamond x_{1} \diamond x_{2} \diamond \ldots \diamond x_{n}$

Lifting equations over applicative functors

Canonical form

pure leaves $\diamond($ pure $L \diamond$ fresh $)=$ pure $(\cdot) \diamond$ fresh \diamond pure []

1. Convert to canonical form
pure $(\lambda x$. leaves $(L x)) \diamond$ fresh $=$ pure $(\lambda x . x \cdot[]) \diamond$ fresh
2. Generalise opaque arguments
$\forall X$. pure $(\lambda x$. leaves $(L x)) \diamond X=$ pure $(\lambda x . x \cdot[]) \diamond X$

$\forall x$. leaves $(\mathrm{L} x) \quad=\quad x \cdot[]$

Lifting equations over applicative functors

[Hinge 2010]

pure function opaque arguments

Canonical form

pure leaves $\diamond($ pure $L \diamond$ fresh $)=$ pure $(\cdot) \diamond$ fresh \diamond pure []

1. Convert to canonical form
pure $(\lambda x$. leaves $(L x)) \diamond$ fresh $=$ pure $(\lambda x . x \cdot[]) \diamond$ fresh
2. Generalise opaque arguments
$\forall X$. pure $(\lambda x$. leaves $(L x)) \diamond X=$ pure $(\lambda x . x \cdot[]) \diamond X$
3. Equality is a congruence

$$
\begin{array}{llr}
(\lambda x . \text { leaves }(\mathrm{L} x)) & = & \text { pure }(\lambda x . x \cdot[]) \\
\forall x . \text { leaves }(\mathrm{L} x) & \uparrow & \\
& = & x \cdot[]
\end{array}
$$

Lifting equations over applicative functors

[Henze 2010]

pure function opaque arguments

Canonical form

pure leaves $\diamond($ pure $L \diamond$ fresh $)=$ pure $(\cdot) \diamond$ fresh \diamond pure []

1. Convert to canonical form
pure $(\lambda x$. leaves $(L x)) \diamond$ fresh $=$ pure $(\lambda x . x \cdot[]) \diamond$ fresh
2. Generalise opaque arguments
$\forall X$. pure $(\lambda x$. leaves $(\mathrm{L} x)) \diamond X=$ pure $(\lambda x . x \cdot[]) \diamond X$
3. Equality is a congruence
pure
$(\lambda x$. leaves $(L x)) \quad=\quad$ pure $(\lambda x . x \cdot[])$
4. Use extensionality
$\forall x$. leaves ($\mathrm{L} x$)
$=\quad x \cdot[]$

Lifting equations over applicative functors

Canonical form pure function opaque arguments
[McBride, Paterson] applicative expression \mapsto pure $f \diamond x_{1} \diamond x_{2} \diamond \ldots \diamond x_{n}$
pure leaves $\diamond($ pure $L \diamond$ fresh $)=$ pure $(\cdot) \diamond$ fresh \diamond pure []

1. Convert to canonical form
pure $(\lambda x$. leaves $(L x)) \diamond$ fresh $=$ pure $(\lambda x . x \cdot[]) \diamond$ fresh
2. Generalise opaque arguments
$\forall X$. pure $(\lambda x$. leaves $(\mathrm{L} x)) \diamond X$
3. Equality is a congruence
$(\lambda x$. leaves $(\mathrm{L} x)) \quad=\quad$ pure $(\lambda x \cdot x \cdot[])$
4. Use extensionality
$\forall x$. leaves ($\mathrm{L} x$)
$=$
$x \cdot[]$

Tree mirroring

$$
\begin{aligned}
& \text { mirror }:: \alpha \text { tree } \Rightarrow \alpha \text { tree } \\
& \text { mirror }(\mathrm{L} x)=\mathrm{L} x \\
& \text { mirror }(\mathrm{N} / r)=\mathrm{N}(\text { mirror } r)(\text { mirror } l)
\end{aligned}
$$

$\mathrm{lb\mid}:: \alpha$ tree \Rightarrow nat tree state $\mathrm{lbl}\left(\mathrm{L}_{-}\right)=$pure $\mathrm{L} \diamond$ fresh $\mathrm{lb\mid}(\mathrm{~N} / r)=$ pure $\mathrm{N} \diamond \mathrm{lb\mid} / \diamond \mathrm{lb\mid} r$

Lemma: |bl (mirror t) $=$ pure mirror $\diamond \mathrm{lb\mid} t$
Proof by induction on t.
Case N / r:

$$
\stackrel{?}{=} \frac{\text { pure }\left(\lambda r^{\prime} I^{\prime} . \mathrm{N}\left(\text { mirror } r^{\prime}\right)\left(\text { mirror } I^{\prime}\right)\right) \diamond \text { Ibl } r \diamond \text { lbl I }}{\sim}
$$

Tree mirroring

$$
\begin{aligned}
& \text { mirror }:: \alpha \text { tree } \Rightarrow \alpha \text { tree } \\
& \text { mirror }(\mathrm{L} x)=\mathrm{L} x \\
& \text { mirror }(\mathrm{N} / r)=\mathrm{N}(\text { mirror } r)(\text { mirror } l)
\end{aligned}
$$

$\mathrm{lb\mid}:: \alpha$ tree \Rightarrow nat tree state $\mathrm{lbl}\left(\mathrm{L}_{-}\right)=$pure $\mathrm{L} \diamond$ fresh $\mathrm{lb\mid}(\mathrm{~N} / r)=$ pure $\mathrm{N} \diamond \mathrm{lb\mid} / \diamond \mathrm{lb\mid} r$

Lemma: \quad lbl $($ mirror $t)=$ pure mirror $\diamond \mathrm{lb\mid} t$
Proof by induction on t.
Case N / r:

$$
\stackrel{?}{\stackrel{\text { pure }}{ }\left(\lambda r^{\prime} I^{\prime} . \mathrm{N}\left(\text { mirror } r^{\prime}\right)\left(\text { mirror } I^{\prime}\right)\right) \diamond \mid \mathrm{Ibl} r \diamond \operatorname{lbl} I}
$$

Tree mirroring and random labels

$$
\begin{aligned}
& \text { mirror }:: \alpha \text { tree } \Rightarrow \alpha \text { tree } \\
& \text { mirror }(\mathrm{L} x)=\mathrm{L} x \\
& \text { mirror }(\mathrm{N} / r)=\mathrm{N}(\text { mirror } r)(\text { mirror } l)
\end{aligned}
$$

lbl :: α tree \Rightarrow nat tree probability $\mathrm{lbl}\left(\mathrm{L}_{-}\right)=$pure $\mathrm{L} \diamond$ fresh $\mathrm{lb\mid}(\mathrm{~N} / r)=$ pure $\mathrm{N} \diamond \mathrm{lb\mid} / \diamond \mathrm{lb\mid} r$

Lemma: lbl (mirror t) $=$ pure mirror $\diamond \mathrm{lbl} t$
if effects commute
Proof by induction on t.
Case N / r:

$$
=\frac{\text { pure }\left(\lambda r^{\prime} I^{\prime} . \mathrm{N}\left(\text { mirror } r^{\prime}\right)\left(\text { mirror } I^{\prime}\right)\right) \diamond \mathrm{Ibl} r \diamond \mathrm{Ibl} I}{\uparrow}
$$

Tree mirroring and random labels

$$
\begin{aligned}
& \text { mirror }:: \alpha \text { tree } \Rightarrow \alpha \text { tree } \\
& \text { mirror }(\mathrm{L} x)=\mathrm{L} x \\
& \text { mirror }(\mathrm{N} / r)=\mathrm{N}(\text { mirror } r)(\text { mirror } l)
\end{aligned}
$$

Criterion for commutative effects:
 pure $(\lambda f x y . f y x) \diamond f \diamond x \diamond y=f \diamond y \diamond x$
 C
 $$
f x y=f \quad y \quad x
$$

Lemma: lbl (mirror t) $=$ pure mirror $\diamond \mathrm{lbl} t$
if effects commute
Proof by induction on t.
Case N / r:

$$
=\frac{\text { pure }\left(\lambda r^{\prime} I^{\prime} . \mathrm{N}\left(\text { mirror } r^{\prime}\right)\left(\text { mirror } I^{\prime}\right)\right) \diamond \mathrm{Ibl} r \diamond \mathrm{Ibl} I}{\uparrow}
$$

Subtrees

$$
\begin{aligned}
& \text { Lemma: } \\
& \qquad \mathrm{lb\mid}(\text { right } t)=\text { pure right } \diamond \mathrm{lb\mid} t \\
& \text { Proof by case analysis on } t \text {. } \\
& \text { Case } \mathrm{N} / r \text { : } \\
& \quad \text { pure }\left(\lambda r^{\prime} \cdot r^{\prime}\right) \quad \diamond \mid \mathrm{bl} r \\
& \quad \text { pure }\left(\lambda_{-} r^{\prime} . r^{\prime}\right) \diamond \mid \mathrm{lb\mid} I \diamond \mathrm{Ib\mid} r
\end{aligned}
$$

Subtrees

Criterion for omissible effects:

$$
\begin{aligned}
\text { pure }(\lambda x y \cdot x) \diamond x \diamond y & =x \\
\mathrm{~K} \quad x \quad y & =x
\end{aligned}
$$

Lemma: if effects are omissible $\mathrm{lbl}($ right $t)=$ pure right $\diamond \mathrm{lbl} t$

Proof by case analysis on t.
Case N / r:
pure $\left(\lambda r^{\prime} . r^{\prime}\right) \quad \diamond \mathrm{Ibl} r$
$=$
pure $\left(\lambda_{-} r^{\prime} . r^{\prime}\right) \diamond|\mathrm{l}| \curvearrowright \mid \mathrm{lb} r$

Combinatorial basis BCKW

- Declarative characterisation of "liftable" equations
- Modular implementation via bracket abstraction

Combinatorial basis BCKW

- Declarative characterisation of "liftable" equations
- Modular implementation via bracket abstraction
- User declares and proves combinator properties at registration

Combinatorial basis BCKW

- Declarative characterisation of "liftable" equations
- Modular implementation via bracket abstraction
- User declares and proves combinator properties at registration

Summary

www.isa-afp.org/entries/Applicative_Lifting.shtml

```
applicative state
for
    pure: pure_state
    ap: ap_state
proof (prove)
goal (4 subgoals):
    1. \f x. pure f \diamond pure x = pure (
    2. }\Lambdagffx.pure (\lambdag f x.g (f x))
    3. }\wedgex\mathrm{ . pure ( }\lambda\textrm{x},\textrm{x})\diamond\textrm{x}=\textrm{x
    4. \f x. f\diamond pure x = pure ( }\lambda\textrm{f}.
    functor registration
```


Summary

www.isa-afp.org/entries/Applicative_Lifting.shtml

