

Certification of Classical Confluence Results for Left-Linear Term Rewrite Systems

Julian Nagele Aart Middeldorp

Department of Computer Science University of Innsbruck

ITP 2016 August 23, 2016

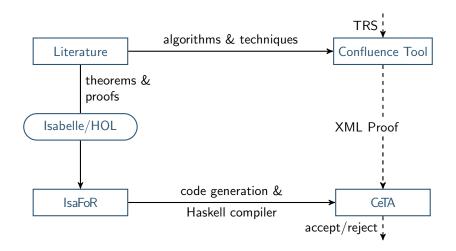
Rewriting

- simple computational model for equational reasoning
- widely used in proof assistants, functional programming,...
- this talk: untyped first-order term rewriting

Confluence Criteria

Knuth and Bendix, orthogonality, strongly/parallel/development closed critical pairs, decreasing diagrams (rule labeling), parallel and simultaneous critical pairs, divide and conquer techniques (commutation, layer preservation, order-sorted decomposition), decision procedures, depth/weight preservation, reduction-preserving completion, Church-Rosser modulo, relative termination and extended critical pairs, non-confluence techniques (tcap, tree automata, interpretation), ...

Reliable Automatic Confluence Analysis



Critical Pairs

Definition

 \rightarrow is strongly confluent if $\ \leftarrow \cdot \rightarrow \ \subseteq \rightarrow^* \cdot \ \stackrel{=}{\leftarrow}$

Definition

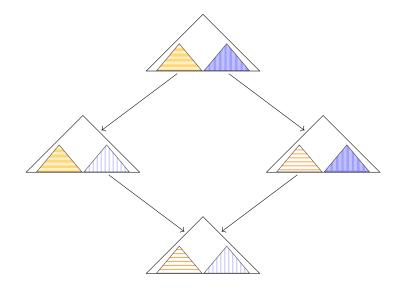
critical overlap $(\ell_1
ightarrow r_1, {\it C}, \ell_2
ightarrow r_2)_\mu$ consists of

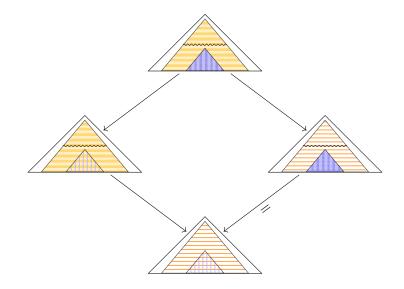
- (variable disjoint variants of) rules $\ell_1 o r_1$, $\ell_2 o r_2$
- context C, such that $\ell_2 = C[\ell']$ with $\ell' \notin \mathcal{V}$ and $\mathsf{mgu}(\ell_1, \ell') = \mu$

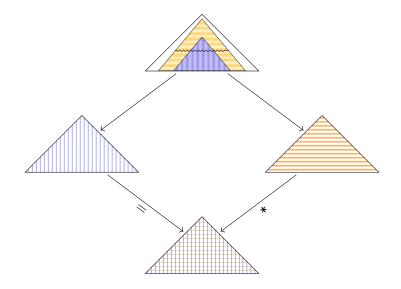
then $C\mu[r_1\mu] \leftarrow \rtimes \rightarrow r_2\mu$ is critical pair

Theorem (Huet)

If TRS \mathcal{R} is linear and $s \rightarrow^= \cdot^* \leftarrow t$ and $s \rightarrow^* \cdot^= \leftarrow t$ for all $t \leftarrow \rtimes \rightarrow s$ then $\rightarrow_{\mathcal{R}}$ is strongly confluent







Critical Pairs

Example

• TRS ${\cal R}$

$$f(f(x,y),z) \rightarrow f(x,f(y,z))$$
 $f(x,y) \rightarrow f(y,x)$

• 4 non-trivial critical pairs

$$\begin{array}{ll} \mathsf{f}(\mathsf{f}(x,\mathsf{f}(y,z)),v) \leftarrow \rtimes \to \mathsf{f}(\mathsf{f}(x,y),\mathsf{f}(z,v)) & \mathsf{f}(x,\mathsf{f}(y,z)) \leftarrow \rtimes \to \mathsf{f}(z,\mathsf{f}(x,y)) \\ \mathsf{f}(z,\mathsf{f}(x,y)) \leftarrow \rtimes \to \mathsf{f}(x,\mathsf{f}(y,z)) & \mathsf{f}(\mathsf{f}(y,x),z) \leftarrow \rtimes \to \mathsf{f}(x,\mathsf{f}(y,z)) \end{array}$$

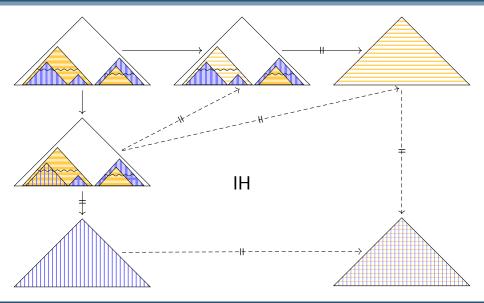
• are strongly closed, hence \mathcal{R} is (strongly) confluent

Remark

Right-linearity is a rather unnatural restriction

Theorem (Huet)

If $\mathcal R$ is left-linear and s \circledast t for all s $\leftarrow \rtimes \to$ t then \circledast has the diamond property



Parallel Rewriting and Measuring Overlap

Definitions (Huet)

- $s \xrightarrow{\{p_1,...,p_n\}} t$ if $p_i \parallel p_j$ for $i \neq j$ and $s|_{p_i} \rightarrow^{\epsilon} t|_{p_i}$ for all $1 \leqslant i, j \leqslant n$
- overlap of peak is $\blacktriangle_{\mathsf{H}} \left(\xleftarrow{P_1}{\longleftarrow} s \xrightarrow{P_2}{\longrightarrow} \right) = \sum_{q \in Q} |s|_q|$ where
- $Q = \{p_1 \in P_1 \mid \exists p_2 \in P_2, p_2 \leq p_1\} \cup \{p_2 \in P_2 \mid \exists p_1 \in P_1, p_1 \leq p_2\}$
- book keeping required by sets of positions and reasoning about \blacktriangle_H in Isabelle became convoluted, inelegant, and in the end unmanageable

Definitions (Toyama)

- $C[s_1, \ldots, s_n] \xrightarrow{s_1, \ldots, s_n} C[t_1, \ldots, t_n]$ if $s_i \to^{\epsilon} t_i$ for all $1 \leq i \leq n$
- overlap of peak is $\blacktriangle_T \left(\xleftarrow{t_1, \dots, t_n}{\#} s \xrightarrow{u_1, \dots, u_m} \right) = \sum_{s \in S} |s|$ where
- $S = \{u_i \mid \exists t_j. u_i \leq t_j\} \cup \{t_j \mid \exists u_i. t_j \leq u_i\}$

Example

• TRS ${\cal R}$

 $f(a,a,b,b) \to f(c,c,c,c) \qquad a \to b \qquad a \to c \qquad b \to a \qquad b \to c$

• peak after closing critical pair

Measuring Overlap in IsaFoR

Definition

Overapproximation of overlap between two parallel steps is multiset defined by

where $\overline{a}_1, \ldots, \overline{a}_n = \overline{a}$ and $\overline{b}_1, \ldots, \overline{b}_n = \overline{b}$ are partitions of \overline{a} and \overline{b} such that length of \overline{a}_i and \overline{b}_i matches number of holes in C_i and D_i for all $1 \le i \le n$

- compare multisets using multiset extension of superterm relation \triangleright_{mul}
- ▷_{mul} is well-founded

Example

Applying this definition for the two peaks from before yields

$$\mathbf{A} \left(\stackrel{f(\square, \square, \square,], a, a, b, b}{\longleftrightarrow} f(a, a, b, b) \xrightarrow{\square, f(a, a, b, b)} \right) = \{a, a, b, b\}$$
$$\mathbf{A} \left(\stackrel{f(b, \square, \square,], a, b, b}{\longleftrightarrow} f(b, a, b, b) \xrightarrow{f(\square, \square, \square,], b, a, b, b} \right) = \{a, b, b\}$$

and
$$\{a,a,b,b\} \vartriangleright_{\mathsf{mul}} \{a,b,b\}$$

Lemma

•
$$\blacktriangle \left(\stackrel{C,\overline{a}}{\longleftrightarrow} s \xrightarrow{D,\overline{b}}{\Longrightarrow} \right) = \bigstar \left(\stackrel{D,\overline{b}}{\longleftrightarrow} s \xrightarrow{C,\overline{a}}{\Longrightarrow} \right)$$

• $\bigstar \left(\stackrel{C_{i},\overline{a}_{i}}{\longleftrightarrow} s_{i} \xrightarrow{D_{i},\overline{b}_{i}}{\Longrightarrow} \right) \subseteq \bigstar \left(\stackrel{f(C_{1},...,C_{n}),\overline{a}}{\longleftrightarrow} f(s_{1},...,s_{n}) \xrightarrow{f(D_{1},...,D_{n}),\overline{b}}{\Longrightarrow} \right)$
• $\{a_{1},...,a_{c}\} \vartriangleright_{mul}^{=} \bigstar \left(\stackrel{C,a_{1},...,a_{c}}{\longleftrightarrow} s \xrightarrow{D,\overline{b}}{\Longrightarrow} \right)$

Almost Parallel Closed Critical Pairs

Theorem (Toyama)

If \mathcal{R} is left-linear, $t \twoheadrightarrow s$ for all inner critical pairs $t \leftrightarrow \rtimes \rightarrow s$, and $t \twoheadrightarrow \cdot^* \leftarrow s$ for all overlays $t \leftarrow \bowtie \rightarrow s$ then \circledast is strongly confluent

Proof (Adaptations)

•
$$t \xleftarrow{C,\overline{a}}{s} \xrightarrow{D,\overline{b}}{s} u$$

- show $t \twoheadrightarrow^* \cdot \nleftrightarrow u$ and $u \twoheadrightarrow^* \cdot \twoheadleftarrow t$
- if $C = D = \Box$ then assumption for overlays applies
- other cases remain (almost) the same

Remark

• incorporating Toyama's extension to commutation is straightforward

Certification and Experiments

CeTA

- CeTA computes critical pairs
- and checks linearity and joining conditions
- only information required in certificate: bound on length of \rightarrow^*

CSI on 277 TRSs in Confluence Problem Database

	SC	PC	SC+PC	full
yes	38	21	41	110
no	0	0	0	48
maybe	239	256	236	119

Development Closed Critical Pairs

Theorem (van Oostrom)

If \mathcal{R} is left-linear and $t \Leftrightarrow s$ for all critical peaks $t \leftarrow \rtimes \to s$ then \Leftrightarrow has the diamond property

- nesting of steps makes describing \rightarrow harder
- need to split off single steps on both sides and combine closing step with remainder
- due to nesting of redexes this needs non-trivial reasoning about residuals
- need to split off "innermost" overlap to get decrease in measure
- notion of overlap does not carry over

Summary

- formalization of two classical confluence results
- strongly closed was straightforward
- (almost) parallel closed was much more involved

Main differences to Paper Proof

- multihole contexts for describing parallel steps
- notion of overlap: collect overlapping redexes in multiset, compare with ▷_{mul}
- future work: development closed
- harder future work: apply to higher-order rewriting