
A Framework for the Automatic Formal
Verification of Refinement from Cogent to C

Christine Rizkallah4, Japheth Lim1, Yutaka Nagashima1,
Thomas Sewell1,2, Zilin Chen1,2, Liam O’Connor1,2, Toby

Murray1,3, Gabriele Keller1,2, and Gerwin Klein1,2

1 Data61 (formerly NICTA), CSIRO, Sydney, Australia

2 University of New South Wales, Sydney, Australia

3 University of Melbourne, Australia

4 University of Pennsylvania, Philadelphia, PA, USA

ITP, Nancy, France
24th of August 2016

Cogent Project: Overall Story

Motivation
File systems are too important to remain unverified

Problem
There are many file systems and they are huge (≈ seL4)

Aim
Create method for feasibly verifying file systems

Idea
Automate large portions of the verification process

Sounds good, but HOW?

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 1 / 28

Cogent Project: Overall Story

Motivation
File systems are too important to remain unverified

Problem
There are many file systems and they are huge (≈ seL4)

Aim
Create method for feasibly verifying file systems

Idea
Automate large portions of the verification process

Sounds good, but HOW?

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 1 / 28

Cogent Project: Overall Story

Motivation
File systems are too important to remain unverified

Problem
There are many file systems and they are huge (≈ seL4)

Aim
Create method for feasibly verifying file systems

Idea
Automate large portions of the verification process

Sounds good, but HOW?

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 1 / 28

Cogent Project: Overall Story

Motivation
File systems are too important to remain unverified

Problem
There are many file systems and they are huge (≈ seL4)

Aim
Create method for feasibly verifying file systems

Idea
Automate large portions of the verification process

Sounds good, but HOW?

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 1 / 28

Cogent Project: Overall Story

Motivation
File systems are too important to remain unverified

Problem
There are many file systems and they are huge (≈ seL4)

Aim
Create method for feasibly verifying file systems

Idea
Automate large portions of the verification process

Sounds good, but HOW?

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 1 / 28

Languages, Type Systems, and Certifying Compilers

I Purely functional languages allow for an easier, more direct
style of formal reasoning about code

I Design a restricted purely functional language, expressive
enough to describe most of the file system code

I Use type systems techniques (linear types) to enforce
properties such as memory safety at compile time

I Create a certifying compiler to automate the low level
“boring” parts of the verification

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 2 / 28

Languages, Type Systems, and Certifying Compilers

I Purely functional languages allow for an easier, more direct
style of formal reasoning about code

I Design a restricted purely functional language, expressive
enough to describe most of the file system code

I Use type systems techniques (linear types) to enforce
properties such as memory safety at compile time

I Create a certifying compiler to automate the low level
“boring” parts of the verification

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 2 / 28

Languages, Type Systems, and Certifying Compilers

I Purely functional languages allow for an easier, more direct
style of formal reasoning about code

I Design a restricted purely functional language, expressive
enough to describe most of the file system code

I Use type systems techniques (linear types) to enforce
properties such as memory safety at compile time

I Create a certifying compiler to automate the low level
“boring” parts of the verification

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 2 / 28

Languages, Type Systems, and Certifying Compilers

I Purely functional languages allow for an easier, more direct
style of formal reasoning about code

I Design a restricted purely functional language, expressive
enough to describe most of the file system code

I Use type systems techniques (linear types) to enforce
properties such as memory safety at compile time

I Create a certifying compiler to automate the low level
“boring” parts of the verification

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 2 / 28

Languages, Type Systems, and Certifying Compilers

I Purely functional languages allow for an easier, more direct
style of formal reasoning about code

I Design a restricted purely functional language, expressive
enough to describe most of the file system code

I Use type systems techniques (linear types) to enforce
properties such as memory safety at compile time

I Create a certifying compiler to automate the low level
“boring” parts of the verification

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 2 / 28

Cogent Project: Results in a Nutshell

I Cogent is a functional language with a linear type system.

I Cogent’s certifying compiler automatically generates:

1. efficient C code
2. a formal model of the code that is easy to reason about
3. a machine-checked proof linking the two (in Isabelle)

I implemented BilbyFs and ext2 file systems in Cogent

I verified functional correctness of key BilbyFs operations
I relied on automating large parts of the verification

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 3 / 28

Cogent Project: Results in a Nutshell

I Cogent is a functional language with a linear type system.

I Cogent’s certifying compiler automatically generates:

1. efficient C code
2. a formal model of the code that is easy to reason about
3. a machine-checked proof linking the two (in Isabelle)

I implemented BilbyFs and ext2 file systems in Cogent

I verified functional correctness of key BilbyFs operations
I relied on automating large parts of the verification

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 3 / 28

Cogent Project: Results in a Nutshell

I Cogent is a functional language with a linear type system.

I Cogent’s certifying compiler automatically generates:

1. efficient C code
2. a formal model of the code that is easy to reason about
3. a machine-checked proof linking the two (in Isabelle)

I implemented BilbyFs and ext2 file systems in Cogent

I verified functional correctness of key BilbyFs operations

I relied on automating large parts of the verification

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 3 / 28

Cogent Project: Results in a Nutshell

I Cogent is a functional language with a linear type system.

I Cogent’s certifying compiler automatically generates:

1. efficient C code
2. a formal model of the code that is easy to reason about
3. a machine-checked proof linking the two (in Isabelle)

I implemented BilbyFs and ext2 file systems in Cogent

I verified functional correctness of key BilbyFs operations
I relied on automating large parts of the verification

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 3 / 28

How does the Certifying Compiler Automatically
Generate Refinement Theorems and Proofs?

But First Let’s Get Familiar with Cogent

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 4 / 28

How does the Certifying Compiler Automatically
Generate Refinement Theorems and Proofs?

But First Let’s Get Familiar with Cogent

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 4 / 28

The Cogent Language

I linearly typed, restricted, polymorphic, higher-order,
purely functional language

I has typical let, if, ..., for records take, put (linearity)

I Cogent programs rely on an external library of abstract
data types (ADTs) for data structures like arrays, lists,
red-black trees, etc.

I loops are implemented as iterators over ADTs

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 5 / 28

Linear Type System

I Variables with a linear type must be used exactly once.

I Cogent’s linear type system:
I allows generating efficient imperative code with in-place

updates
I assists memory management
I prevent errors such as use-after-free, memory leaks, pointer

mismanagement in error-handling, etc.

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 6 / 28

Cogent Example: Flip

flip :: {f :: U8} w→ {f :: U8} w
flip x =

take x′ {f = y} = x
in if y == 0

then put x′.f := 1
else put x′.f := 0

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 7 / 28

Linear Type System: Examples

Variables with a linear type must be used exactly once.

let x = allocData
and y = x
and = free x
in y

let x = allocData
and y = x
and = free x
in y

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 8 / 28

Linear Type System: Examples

Variables with a linear type must be used exactly once.

let x = allocData
and y = x
and = free x
in y

let x = allocData
and y = x
and = free x
in y

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 8 / 28

Linear Type System: Examples

Variables with a linear type must be used exactly once.

let x = allocData
in ()

let x = allocData
in ()

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 9 / 28

Linear Type System: Examples

Variables with a linear type must be used exactly once.

let x = allocData
in ()

let x = allocData
in ()

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 9 / 28

Linear Type System: Examples

Variables with a linear type must be used exactly once.

let x = allocData
in if condition then Some x

else None

let x = allocData
in if condition then Some x

else None

Variables with a linear type must be freed or returned.

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 10 / 28

Linear Type System: Examples

Variables with a linear type must be used exactly once.

let x = allocData
in if condition then Some x

else None

let x = allocData
in if condition then Some x

else None

Variables with a linear type must be freed or returned.

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 10 / 28

Linear Type System: Examples

The linear type system enables the conversion from purely
functional to imperative code with in-place memory update.

let x = allocData
and y = updateData x
in y

The C code uses the same variables in memory for x and y.

Cogent needs no garbage collector.

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 11 / 28

Linear Type System: Examples

The linear type system enables the conversion from purely
functional to imperative code with in-place memory update.

let x = allocData
and y = updateData x
in y

The C code uses the same variables in memory for x and y.

Cogent needs no garbage collector.

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 11 / 28

Linear Type System: Examples

The linear type system enables the conversion from purely
functional to imperative code with in-place memory update.

let x = allocData
and y = updateData x
in y

The C code uses the same variables in memory for x and y.

Cogent needs no garbage collector.

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 11 / 28

Why can we get away with type system and restrictions?

Idea

I Write most code in Cogent to simplify its verification

I Write a small part in C and verify it manually

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 12 / 28

Cogent: Certifying Compiler

CompilerCOGENT
Program

C
Code

Pure
Functional

Spec

proof of
implementation

correctness

ideal for
low-effort
reasoning

— refinement proof —
and also implies
memory-safety,

absence of
undefined

behaviour, etc.

I Certifying compiler: certifies correctness of its compilation.

I Cogent’s certifying compiler automatically generates:

1. efficient C code
2. a formal HOL spec. of the code that is easy to reason about
3. a machine-checked proof linking the two (in Isabelle)

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 13 / 28

Cogent: Certifying Compiler

CompilerCOGENT
Program

C
Code

Pure
Functional

Spec

proof of
implementation

correctness

ideal for
low-effort
reasoning

— refinement proof —
and also implies
memory-safety,

absence of
undefined

behaviour, etc.

I Certifying compiler: certifies correctness of its compilation.

I Cogent’s certifying compiler automatically generates:

1. efficient C code
2. a formal HOL spec. of the code that is easy to reason about
3. a machine-checked proof linking the two (in Isabelle)

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 13 / 28

Cogent: Certifying Compiler

Refinement

I The compiler uses an underlying routine to
I discharge cumbersome C safety obligations and
I provide a HOL emb. more amenable to verification.

I Theorem: When C executes to a value, HOL spec.
evaluates similarly.

I Hence, proofs about HOL spec. also hold for C code.

I This means we can now prove theorems using low-effort
equational reasoning on HOL spec. rather than deal with
tedious C, and the theorems also hold for the C code!

Performance

I The performance of the generated C is similar to that of
hand written C.

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 14 / 28

Cogent: Certifying Compiler

Refinement

I The compiler uses an underlying routine to
I discharge cumbersome C safety obligations and
I provide a HOL emb. more amenable to verification.

I Theorem: When C executes to a value, HOL spec.
evaluates similarly.

I Hence, proofs about HOL spec. also hold for C code.

I This means we can now prove theorems using low-effort
equational reasoning on HOL spec. rather than deal with
tedious C, and the theorems also hold for the C code!

Performance

I The performance of the generated C is similar to that of
hand written C.

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 14 / 28

Cogent: Certifying Compiler

Refinement

I The compiler uses an underlying routine to
I discharge cumbersome C safety obligations and
I provide a HOL emb. more amenable to verification.

I Theorem: When C executes to a value, HOL spec.
evaluates similarly.

I Hence, proofs about HOL spec. also hold for C code.

I This means we can now prove theorems using low-effort
equational reasoning on HOL spec. rather than deal with
tedious C, and the theorems also hold for the C code!

Performance

I The performance of the generated C is similar to that of
hand written C.

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 14 / 28

Cogent: Certifying Compiler

Refinement

I The compiler uses an underlying routine to
I discharge cumbersome C safety obligations and
I provide a HOL emb. more amenable to verification.

I Theorem: When C executes to a value, HOL spec.
evaluates similarly.

I Hence, proofs about HOL spec. also hold for C code.

I This means we can now prove theorems using low-effort
equational reasoning on HOL spec. rather than deal with
tedious C, and the theorems also hold for the C code!

Performance

I The performance of the generated C is similar to that of
hand written C.

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 14 / 28

Cogent: Certifying Compiler

Refinement

I The compiler uses an underlying routine to
I discharge cumbersome C safety obligations and
I provide a HOL emb. more amenable to verification.

I Theorem: When C executes to a value, HOL spec.
evaluates similarly.

I Hence, proofs about HOL spec. also hold for C code.

I This means we can now prove theorems using low-effort
equational reasoning on HOL spec. rather than deal with
tedious C, and the theorems also hold for the C code!

Performance

I The performance of the generated C is similar to that of
hand written C.

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 14 / 28

Cogent Compiler uses Pre-Existing Tools

Simpl [Schirmer 2005]

I Imperative language embedded into Isabelle/HOL

C-Parser [Norrish 2012]

I straightforward translation from C to Simpl

AutoCorres [Greenaway et al. 2012]

I converts Simpl to monadic representation in Isabelle/HOL

I verified simplifications

I output meant for manual reasoning

I we tweak AutoCorres to make its output more predictable
(for automation on top)

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 15 / 28

How does the Certifying Compiler Automatically
Generate Refinement Theorems and Proofs?

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 16 / 28

Cogent Example: Back to Flip

1 flip :: {f :: U8} w→ {f :: U8} w
2 flip x =
3 take x′ {f = y} = x
4 in if y == 0
5 then put x′.f := 1
6 else put x′.f := 0

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 17 / 28

Cogent Example: Generated HOL and C Flip

Functional Specification (HOL) C code (monadic representation)

1 flip :: {f :: U8} → {f :: U8}
2 flip x =
3 take x′ {f = y} = x
·
4 in let tmp1 = 0
5 and tmp2 = (y == tmp1)
6 in if tmp2
7 then let tmp3 = 1
8 and x′′ = put x′.f := tmp3
·
9 in x′′

10 else let tmp4 = 0
11 and x′′ = put x′.f := tmp4
·

12 in x′′

·
·

1 flipC :: rec1 ptr⇒ (rec1 ptr, σ) nondet monad
2 flipC x = do
3 guard (λσ. is-valid σ x);
4 y ← gets (λσ. σ[r].f);
5 tmp1 ← return 0;
6 tmp2 ← return bool (y = tmp1);
7 tmpresult ← condition (bool tmp2 6= 0)
8 (do tmp3 ← return 1;
9 guard (λσ. is-valid σ x);

10 modify (λσ. σ[x].f := tmp3);
11 return x od)
12 (do tmp4 ← return 0;
13 guard (λσ. is-valid σ x);
14 modify (λσ. σ[x].f := tmp4);
15 return x od);
16 return tmpresult
17 od

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 18 / 28

Overall Project: How did we structure refinement?

Cogent
Compiler

AutoCorres

C-Parser

Well-typedness

Shallow emb

Deep emb

Monadic code

Simpl code

C

func. spec.

HOL

value sem

update sem

monadic sem

Simpl sem

p

AutoCorres

transl. validation

language proof

transl. validation

manual

Isabelle/HOL

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 19 / 28

Overall Project: How did we structure refinement?

Cogent
Compiler

AutoCorres

C-Parser

Well-typedness

Shallow emb

Deep emb

Monadic code

Simpl code

C

func. spec.

HOL

value sem

update sem

monadic sem

Simpl sem

p

AutoCorres

transl. validation

language proof

transl. validation

manual

Isabelle/HOL

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 19 / 28

Overall Project: How did we structure refinement?

Cogent
Compiler

AutoCorres

C-Parser

Well-typedness

Shallow emb

Deep emb

Monadic code

Simpl code

C

func. spec.

HOL

value sem

update sem

monadic sem

Simpl sem

p

AutoCorres

transl. validation

language proof

transl. validation

manual

Isabelle/HOL

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 19 / 28

Overall Project: How did we structure refinement?

Cogent
Compiler

AutoCorres

C-Parser

Well-typedness

Shallow emb

Deep emb

Monadic code

Simpl code

C

func. spec.

HOL

value sem

update sem

monadic sem

Simpl sem

p

AutoCorres

transl. validation

language proof

transl. validation

manual

Isabelle/HOL

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 19 / 28

Overall Project: How did we structure refinement?

Cogent
Compiler

AutoCorres

C-Parser

Well-typedness

Shallow emb

Deep emb

Monadic code

Simpl code

C

func. spec.

HOL

value sem

update sem

monadic sem

Simpl sem

p

AutoCorres

transl. validation

language proof

transl. validation

manual

Isabelle/HOL

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 19 / 28

Overall Project: How did we structure refinement?

Cogent
Compiler

AutoCorres

C-Parser

Well-typedness

Shallow emb

Deep emb

Monadic code

Simpl code

C

func. spec.

HOL

value sem

update sem

monadic sem

Simpl sem

p

AutoCorres

transl. validation

language proof

transl. validation

manual

Isabelle/HOL

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 19 / 28

Overall Project: How did we structure refinement?

Cogent
Compiler

AutoCorres

C-Parser

Well-typedness

Shallow emb

Deep emb

Monadic code

Simpl code

C

func. spec.

HOL

value sem

update sem

monadic sem

Simpl sem

p

AutoCorres

transl. validation

language proof

transl. validation

manual

Isabelle/HOL

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 19 / 28

Overall Project: How did we structure refinement?

Cogent
Compiler

AutoCorres

C-Parser

Well-typedness

Shallow emb

Deep emb

Monadic code

Simpl code

C

func. spec.

HOL

value sem

update sem

monadic sem

Simpl sem

p

AutoCorres

transl. validation

language proof

transl. validation

manual

Isabelle/HOL

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 19 / 28

Overall Project: How did we structure refinement?

Cogent
Compiler

AutoCorres

C-Parser

Well-typedness

Shallow emb

Deep emb

Monadic code

Simpl code

C

func. spec.

HOL

value sem

update sem

monadic sem

Simpl sem

p

AutoCorres

transl. validation

language proof

transl. validation

manual

Isabelle/HOL

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 19 / 28

Overall Project: How did we structure refinement?

Cogent
Compiler

AutoCorres

C-Parser

Well-typedness

Shallow emb

Deep emb

Monadic code

Simpl code

C

func. spec.

HOL

value sem

update sem

monadic sem

Simpl sem

p

AutoCorres

transl. validation

language proof

transl. validation

manual

Isabelle/HOL

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 19 / 28

Overall Project: How did we structure refinement?

Cogent
Compiler

AutoCorres

C-Parser

Well-typedness

Shallow emb

Deep emb

Monadic code

Simpl code

C

func. spec.

HOL

value sem

update sem

monadic sem

Simpl sem

p

AutoCorres

transl. validation

language proof

transl. validation

manual

Isabelle/HOL

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 19 / 28

Overall Project: How did we structure refinement?

Cogent
Compiler

AutoCorres

C-Parser

Well-typedness

Shallow emb

Deep emb

Monadic code

Simpl code

C

func. spec.

HOL

value sem

update sem

monadic sem

Simpl sem

p

AutoCorres

transl. validation

language proof

transl. validation

manual

Isabelle/HOL

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 19 / 28

Overall Project: How did we structure refinement?

Cogent
Compiler

AutoCorres

C-Parser

Well-typedness

Shallow emb

Deep emb

Monadic code

Simpl code

C

func. spec.

HOL

value sem

update sem

monadic sem

Simpl sem

p

AutoCorres

transl. validation

language proof

transl. validation

manual

Isabelle/HOL

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 19 / 28

Overall Project: How did we structure refinement?

Cogent
Compiler

AutoCorres

C-Parser

Well-typedness

Shallow emb

Deep emb

Monadic code

Simpl code

C

func. spec.

HOL

value sem

update sem

monadic sem

Simpl sem

p

AutoCorres

transl. validation

language proof

transl. validation

manual

Isabelle/HOL

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 19 / 28

Overall Project: How did we structure refinement?

Cogent
Compiler

AutoCorres

C-Parser

Well-typedness

Shallow emb

Deep emb

Monadic code

Simpl code

C

func. spec.

HOL

value sem

update sem

monadic sem

Simpl sem

p

AutoCorres

transl. validation

language proof

transl. validation

manual

Isabelle/HOL

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 19 / 28

How did we prove refinement (update to monadic sem.)?

Data Relations and Refinement Predicate

I values

I types

I several Cogent types correspond to the same C type
I partial type erasure removes linearity from Cogent type

I states

I statements

(corres R e pm U Γ µ σ)

Theories and Automation

I refinement calculus

I well-typedness proof

I syntax directed proof automation

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 20 / 28

How did we prove refinement (update to monadic sem.)?

Data Relations and Refinement Predicate

I values

I types

I several Cogent types correspond to the same C type

I partial type erasure removes linearity from Cogent type

I states

I statements

(corres R e pm U Γ µ σ)

Theories and Automation

I refinement calculus

I well-typedness proof

I syntax directed proof automation

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 20 / 28

How did we prove refinement (update to monadic sem.)?

Data Relations and Refinement Predicate

I values

I types

I several Cogent types correspond to the same C type
I partial type erasure removes linearity from Cogent type

I states

I statements (corres R e pm U Γ µ σ)

Theories and Automation

I refinement calculus

I well-typedness proof

I syntax directed proof automation

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 20 / 28

Refinement Calculus: Var rule

(x 7→ vu) ∈ U val -rel vu vm

corres R x (return vm) U Γ µ σ
Var

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 21 / 28

Refinement Calculus: If rule

Γ1 ` c : Bool (bool c′ = 0 ∨ bool c′ = 1)
c is a Cogent boolean equal to (bool c′ 6= 0)

corres R e1 e
′
1 U Γ2 µ σ corres R e2 e

′
2 U Γ2 µ σ

corresR (if c then e1 else e2)
(dox← condition (bool c′ 6= 0) e′1 e

′
2; returnxod)U (Γ1Γ2) µ σ

If

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 22 / 28

Well-typedness

I Cogent compiler proves via an automated Isabelle tactic
that the deep embedding of input program is well-typed

I proving refinement requires access to typing judgements of
subexpressions of the program

I due to linear types, it is not easy to statically infer that
subexpressions of a well-typed program are well-typed

I our proof automation then uses well-typedness theorems to
discharge typing assumptions in refinement calculus

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 23 / 28

Well-typedness

I Cogent compiler proves via an automated Isabelle tactic
that the deep embedding of input program is well-typed

I proving refinement requires access to typing judgements of
subexpressions of the program

I due to linear types, it is not easy to statically infer that
subexpressions of a well-typed program are well-typed

I our proof automation then uses well-typedness theorems to
discharge typing assumptions in refinement calculus

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 23 / 28

Well-typedness

I Cogent compiler proves via an automated Isabelle tactic
that the deep embedding of input program is well-typed

I proving refinement requires access to typing judgements of
subexpressions of the program

I due to linear types, it is not easy to statically infer that
subexpressions of a well-typed program are well-typed

I our proof automation then uses well-typedness theorems to
discharge typing assumptions in refinement calculus

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 23 / 28

Well-typedness

I Cogent compiler proves via an automated Isabelle tactic
that the deep embedding of input program is well-typed

I proving refinement requires access to typing judgements of
subexpressions of the program

I due to linear types, it is not easy to statically infer that
subexpressions of a well-typed program are well-typed

I our proof automation then uses well-typedness theorems to
discharge typing assumptions in refinement calculus

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 23 / 28

Proof Automation (for concrete program)

I specialize refinement calculus
I some of the rules in the calculus are pretty complicated
I we specialize complex rules to one for each type (of record)

I tactic compositionally applies syntax directed rules

I tactic uses well-typedness theorems to discharge typing
assumptions

I refinement for foreign functions is assumed

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 24 / 28

Proof Automation (for concrete program)

I specialize refinement calculus
I some of the rules in the calculus are pretty complicated
I we specialize complex rules to one for each type (of record)

I tactic compositionally applies syntax directed rules

I tactic uses well-typedness theorems to discharge typing
assumptions

I refinement for foreign functions is assumed

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 24 / 28

Proof Automation (for concrete program)

I specialize refinement calculus
I some of the rules in the calculus are pretty complicated
I we specialize complex rules to one for each type (of record)

I tactic compositionally applies syntax directed rules

I tactic uses well-typedness theorems to discharge typing
assumptions

I refinement for foreign functions is assumed

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 24 / 28

Proof Automation (for concrete program)

I specialize refinement calculus
I some of the rules in the calculus are pretty complicated
I we specialize complex rules to one for each type (of record)

I tactic compositionally applies syntax directed rules

I tactic uses well-typedness theorems to discharge typing
assumptions

I refinement for foreign functions is assumed

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 24 / 28

Conclusion

I We developed a compositional refinement calculus and
proof rules to create a fully automatic refinement certificate
from Cogent to C.

I Through co-generation of code and proofs our framework
significantly reduces the cost of reasoning about efficient C.

I It does so by discharging cumbersome safety obligations
and providing an embedding more amenable to verification.

I Our framework was applied to two real world file systems.

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 25 / 28

Future work

I Speed C-Parser and AutoCorres for our very large dev.
I BilbyFs generated code is ≈ 1.8 x the size of seL4

I Add optimizations (additional to ones we get by using gcc)

I Verify a library of abstract data types

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 26 / 28

Meet the other Verification/PL Folks

Gabi Keller

Liam
O’Connor

Zilin
Chen

Toby
Murray

Japheth
Lim

Yutaka
Nagashima

Thomas
Sewell

Gerwin
Klein

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 27 / 28

Now that you know about Cogent,
consider trying it out!

Cogent: co-generation of code and proofs
significantly reduces the cost of reasoning about

efficient C.

Thanks for Listening, Questions?

Christine Rizkallah & al. | Automatic Verification of Refinement from Cogent to C 28 / 28

