=
—
—

i

Formalization of the Resolution Calculus
for First-Order Logic

Anders Schlichtkrull

A 6+ Qf Oe'"=
£(x+Ax)= “‘)f @ § {z 7182818284

DTU Compute
Department of Applied Mathematics and Computer Science

The resolution calculus for first-order logic

DTU Compute, Technical University of Denmark

M

M

The resolution calculus for first-order logic

+ is a proof calculus for FO CNF formulas. P(x) A (q(y) V 1(x))

DTU Compute, Technical University of Denmark

. : . DU
The resolution calculus for first-order logic

>
S
>

* Is a proof calculus for FO CNF formulas.

- plain logic without types, sorts, equality

px) A (q(y) Vv 1(x))

DTU Compute, Technical University of Denmark

. : . DU
The resolution calculus for first-order logic

>
S
>

* Is a proof calculus for FO CNF formulas.

px) A (q(y) Vv 1(x))
- plain logic without types, sorts, equality
* |5 a refutation proof calculus. P L

DTU Compute, Technical University of Denmark

. : . DU
The resolution calculus for first-order logic =
* Is a proof calculus for FO CNF formulas.

- plain logic without types, sorts, equality

px) A (q(y) Vv 1(x))

* |5 a refutation proof calculus.

* was Introduced by

J.A. Robinson, |. ACM, 1965.

DTU Compute, Technical University of Denmark

=
—
—

The resolution calculus for first-order logic

i

+ is a proof calculus for FO CNF formulas. P(x) A (q(y) V 1(x))

- plain logic without types, sorts, equality

* |5 a refutation proof calculus. P+ 1

* was Introduced by
J.A. Robinson, |. ACM, 1965.

1930-2016

DTU Compute, Technical University of Denmark

—

. : . D
The resolution calculus for first-order logic

i

+ is a proof calculus for FO CNF formulas. P(x) A (q(y) V 1(x))

- plain logic without types, sorts, equality

* |5 a refutation proof calculus.

* was Introduced by

J.A. Robinson, |. ACM, 1965.

1930-2016

* 15 used In automatic theorem provers

Vampire
(e.g. E, SPASS, Vampire).

DTU Compute, Technical University of Denmark

The resolution calculus for propositional logic

A A—0C

DTU Compute, Technical University of Denmark

=
—
—

i

The resolution calculus for propositional logic

Ci1— A A—Q0C
_'CIQCZ

DTU Compute, Technical University of Denmark

=
—
—

i

The resolution calculus for propositional logic

Ci1— A A—Q0C CiVA AV (
-C1— () CiVvV (O

DTU Compute, Technical University of Denmark

=
—
—

i

The resolution calculus for propositional logic

Clashing Iiterals

DTU Compute, Technical University of Denmark

=
—
—

i

M

Motivation
IsaFolL project J1F LR
Isabelle Formalization of Logic g

The formalization is part of Isalol.

[salFol. = library of basic results In automated reasoning.

New calculi or calculus variants can be easily developed

directly in Isabelle.

DTU Compute, Technical University of Denmark

IsaFolL

» Completeness of FOL
Blanchette, Popescu, Traytel (I|CAR 2014)

« CDCL with extensions
Blanchette, Fleury, Weidenbach (I|CAR 2016)

« FO resolution
Schlichtkrull (ITP 2016)

DTU Compute, Technical University of Denmark

=
—
—

i

IsaFolL

» Completeness of FOL
Blanchette, Popescu, Traytel (I|CAR 2014)

« CDCL with extensions
Blanchette, Fleury, Weidenbach (I|CAR 2016)

, . FO resolution : |
Schlichtkrull (ITP 2016) |

DTU Compute, Technical University of Denmark

=
—
—

i

=
—
—

i

Related work

* FO model theory
Harrison in HOL Light (TPHOL 1998)

- FO (but no terms) sequent calculus
Margetson, Ridge In Isabelle/HOL (AFP 2004)

* FO (but no terms) verified prover
Margetson, Ridge In Isabelle/HOL (TPHOL 2005)

* FO sequent calculus
Brasenmann, Koepke in Mizar (Formalized Mathematics 2005)

» Soundness of HOL Light
Harrison in HOL Light (IJCAR 2006)

« FO natural deduction
Berghofer in Isabelle/HOL (AFP 2007)

DTU Compute, Technical University of Denmark

=
—
—

i

Related work

» Constructive completeness proofs
ik in Cog (PhD thesis 2010)

» FO sequent calculus and uncountable languages
Schloder;, Koepke in Mizar (Formalized Mathematics 2012)

» Godel's iIncompleteness
Paulson in Isabelle/HOL (JAR 2015)

* Soundness of HOL Light with definitions
Kumar, Arthan, Myreen, Owens (JAR 2016)

* The Incredible Proof Machine
Breitner, Lohner in Isabelle/HOL (ITP 2016)

* FO axiomatic system (soundness only)
Jensen, Schlichtkrull, Villadsen in Isabelle/HOL (lsabelle Workshop 2016)

DTU Compute, Technical University of Denmark

HE

Books | followed

Symbolic Logic and Alexander Leitsch
Mechanical Theorem Proving

Mordechai Ben-Ari i:gi:Al;eI;ilcf:;’;‘:,(,\C LEE The RESOIUtlon
R Calculus

Mathematical
Logic for

Computer Science

Third Edition

ACADEMIC PRESS
,\ oy New York San Francisco London
LL Sp rl nge r A Subsidisry of Haecourt Beace Jovasovich, Publinhen

Ben-Ari Chang and Lee Lertsch

DTU Compute, Technical University of Denmark 8

Tools | used

Isabelle/jEdit

Isar

Proof methods of Isabelle; auto, blast, metis

Sledgehammer

DTU Compute, Technical University of Denmark

M

—]
=
—

i

Clausal first-order logic

Terms: x; y; f(c, x); £(y, f(x, ¢))

datatype fterm =

Var var-sym
| Fun fun-sym (fterm list)

Herbrand (ground) terms: c; d; f(c, d); 1(d, f(c, ¢))

datatype hterm =
HFun fun-sym (hterm list)

DTU Compute, Technical University of Denmark

=
—
—

i

Clausal first-order logic

DTU Compute, Technical University of Denmark

M

Clausal first-order logic

Atoms: p(c, x); q(d)

type-synonym 't atom = pred-sym * 't list

DTU Compute, Technical University of Denmark

Clausal first-order logic

Atoms: p(c, x); q(d)

type-synonym 't atom = pred-sym * 't list

Literals: p(c, x); ~q(d)

datatype 't literal =
Pos pred-sym ('t list)
| Neg pred-sym ('t list)

DTU Compute, Technical University of Denmark

—]
=
—

i

Clausal first-order logic

Atoms: p(c, x); q(d)

type-synonym 't atom = pred-sym * 't list

Literals: p(c, x); ~q(d)

datatype 't literal =
Pos pred-sym ('t list)
| Neg pred-sym ('t list)

Clauses: Vx y z. p(x,y) v q(2) v q(a)

type-synonym 't clause = 't literal set

DTU Compute, Technical University of Denmark

—]
=
—

i

=
—
—

i

From propositional resolution to FO resolution

rvp -rv(q

PVvVd

{r,py {-r,q}
1P, qJ

DTU Compute, Technical University of Denmark

=
—
—

i

From propositional resolution to FO resolution

rvp -rv(q

PVvVd

{r,py {-r,q}
1P, qJ

r(x), 1(y), p(y); 17r(c), g

7

DTU Compute, Technical University of Denmark

Machinery

DTU Compute, Technical University of Denmark

=
—
—

i

Machinery

Complement of a literal:
p(x, y)©==p(x, y); =q(t(x))< = q(t(x))

fun complement :: 't literal = 't literal where
(Pos P ts)® = Neg P ts
| (Neg P ts)¢ = Pos P ts

DTU Compute, Technical University of Denmark

—]
=
' —

i

—]
=
' —

Machinery

i

Complement of a literal:
p(x, y)©==p(x, y); =q(t(x))< = q(t(x))

fun complement :: 't literal = 't literal where
(Pos P ts)® = Neg P ts
| (Neg P ts)¢ = Pos P ts

Complement of a set of literals:
{p(x, y), ~q(f(x)) ;< = {7p(x,), q(t(x)) }

abbreviation complements :: 't literal set = 't literal set where
L* = complement ~ L

DTU Compute, Technical University of Denmark 13

Machinery

DTU Compute, Technical University of Denmark

=
—
—

i

HE

Machinery

Substitutions:
{xrc,yrdp; {x-1i(x,y), 2~ y}

type synonym substitution = var-sym = fterm

DTU Compute, Technical University of Denmark

Machinery

Substitutions:
{xepc,yrd}; {x~1(x,y), 2~ y}

type synonym substitution = var-sym = fterm

Application:
f(x, gy) - x> ¢,y md} =1(c, g(d))

:: fterm = substitution = fterm where

fun sub
(Var x) - 0 = 0 X
| (Fun f ts) - ¢ = Fun T (map (At. t - o) ts)

DTU Compute, Technical University of Denmark

—]
=
—

i

Machinery

DTU Compute, Technical University of Denmark

=
—
—

i

—]
=
—

i

Machinery

Unifier:
{p(x,Vy),p(z, ¢)} hasunifier {x»c,y~cC,z~ C}

definition unifier :: substitution = fterm literal set = bool

where

unifier ¢ L «— (dL'. VL € L. L - 0o = 1")

DTU Compute, Technical University of Denmark

HE

Machinery

Unifier:
{p(x,Vy),p(z, ¢)} hasunifier {x»c,y~cC,z~ C}

definition unifier :: substitution = fterm literal set = bool

where
unifier ¢ L «— (dL'. VL € L. L - 0o = 1")

Most general unifier:
1P(x, y), p(z,)} has MGU {x = x,y = ¢,z X}

definition mgu :: substitution = fterm literal set = bool where
=0 - 1))

mgu 0 L «— unifier ¢ L A (VYu. unifier u L — (di. u

DTU Compute, Technical University of Denmark

=
—
—

i

FO resolution

(1 and C> share no variables,
Cq C»
. . . . LiCCy, L C (Cy,
(Cr =Ly U(C2 — L)) OOMGUforLlLJLzC

DTU Compute, Technical University of Denmark

=
—
—

i

FO resolution

Ci C, C1 and C; share no variables,
L L ngcla ngcz,
(Cr =Ly U = L))" 0 5 MGU for LiULy

E.g. we can resolve

{r(x), r(y), p(y); {—r(c),qr
{p(c), q}

because {r(x), r(y)} U {r(¢c)} has MGU {x » ¢,y ¢}

DTU Compute, Technical University of Denmark

=
—
—

i

Formalization of FO resolution

DTU Compute, Technical University of Denmark

Formalization of FO resolution

definition applicable C; C; L1 Ly 0 «—

GA{I NG #AA{IANL #{} AN L #{}
A vars C; N vars C = {}
AL CC AL CGC
A mgu o (L U Ly, &)

DTU Compute, Technical University of Denmark

—]
=
' —

i

—]
=
' —

i

Formalization of FO resolution

definition applicable C; C; L1 Ly 0 «—
GA{I NG #AA{IANL #{} AN L #{}
A vars C; N vars C = {}
AL CC AL CGC
A mgu o (L U Ly, &)

definition resolution C; C, Ly L, ¢ = ((C; - L;) U (C, - Ly)) - o

DTU Compute, Technical University of Denmark

HE

Formalization of FO resolution

definition applicable C; C; L1 Ly 0 «—
G A A{rANG#{} AL #A{} AL #{}
A vars C; N vars C = {}
AL € C AL CG
A mgu o (L U Ly, &)

definition resolution C; C, Ly L, 0 = ((C; - L) U (C, - Ly)) - o

inductive resolution step
fterm clause set = fterm clause set = bool where

resolution rule:
C, € (s = (, € (s — applicable C; G L; Ly, 0 =

resolution step Cs (Cs U {resolution C; C, Ly Ly, o})

| standardize apart:
C € Cs = var _renaming of C C' = resolution step Cs (Cs U {C'})

DTU Compute, Technical University of Denmark

HE

Formalization of FO resolution

definition applicable C; C; L1 Ly 0 «—
G A A{rANG#{} AL #A{} AL #{}
A vars C; N vars C = {}
AL € C AL CG
A mgu o (L U Ly, &)

definition resolution C; C, Ly L, 0 = ((C; - L) U (C, - Ly)) - o

inductive resolution step
fterm clause set = fterm clause set = bool where

resolution rule:
C, € (s = (, € (s — applicable C; G L; Ly, 0 =

resolution step Cs (Cs U {resolution C; C, Ly Ly, o})

| standardize apart:
C € Cs = var _renaming of C C' = resolution step Cs (Cs U {C'})

rtranclp resolution step

definition resolution deriv

DTU Compute, Technical University of Denmark

=
—
—

i

Refutational completeness

DTU Compute, Technical University of Denmark

=
—
—

i

Refutational completeness

Refutational completeness:
if C Is unsatisfiable then the calculus can derive a contradiction

DTU Compute, Technical University of Denmark

M

Refutational completeness

Refutational completeness:
if C Is unsatisfiable then the calculus can derive a contradiction

unsatisfiable C — (C + {})

DTU Compute, Technical University of Denmark

=
—
—

i

Semantic tree

DTU Compute, Technical University of Denmark

=
—
—

i

Semantic tree

Enumeration of ground terms: p, q, 1(c), ...

DTU Compute, Technical University of Denmark

M

Semantic tree

Enumeration of ground terms: p, q, 1(c), ...

TN

p-T pF

/ \
q-T q-F

/ \
r(c)~T r(c)~F

DTU Compute, Technical University of Denmark

M

Semantic tree

Enumeration of ground terms: p, q, 1(c), ...

TN

pHT p- F

/ \
qeT q-F

/ \
r(c)~T r(c)~F

Semantic trees are decision trees assigning True and False to

the ground atoms.

DTU Compute, Technical University of Denmark

M

Semantic tree

Enumeration of ground terms: p, q, 1(c), ...

TN

p-T pF

/ \
q-T q-F

/ \
r(c)~T r(c)~F

Semantic trees are decision trees assigning True and False to

the ground atoms.

Node on depth 1 makes decision for atom 1.

DTU Compute, Technical University of Denmark

M

Semantic tree

A path represents a partial (Herbrand) interpretation.

e

p-T pF

N
qeT q—F

N

r(c)»T r(c)~F
Eo {p~T, q~F,r(c)~F}

DTU Compute, Technical University of Denmark 20

=
—
—

i

Formalized enumeration

DTU Compute, Technical University of Denmark 21

Formalized enumeration

definition nat from hatom :: hterm atom = nat where

nat from hatom = (SOME f. bij f)

DTU Compute, Technical University of Denmark

HE

2

Formalized enumeration

definition nat from hatom :: hterm atom = nat where

nat from hatom = (SOME f. bij f)

instantiation hterm :: countable begin
instance by countable datatype

end

DTU Compute, Technical University of Denmark

—]
=
' —

i

2

Formalized enumeration

definition nat from hatom :: hterm atom = nat where
nat from hatom = (SOME f. bij f)

instantiation hterm :: countable begin

instance by countable datatype

end

Llemma infinite hatoms: infinite (UNIV :: 't atom set)
<proof>

DTU Compute, Technical University of Denmark

2

HE

Formalized enumeration

—
—
—

>
e
definition nat from hatom :: hterm atom = nat where
nat from hatom = (SOME f. bij f)
instantiation hterm :: countable begin
instance by countable datatype
end
Llemma infinite hatoms: infinite (UNIV :: 't atom set)
<proof>
Llemma nat from hatom bij: bij nat from hatom
proof -
have countable (UNIV :: hterm atom set) by simp
moreover
have infinite (UNIV :: hterm atom set) using infinite hatoms by auto
ultimately
obtain x where bij (x :: hterm atom = nat) using countableE infinite by blast
then show 7thesis using ... somel by metis
ged

DTU Compute, Technical University of Denmark

—
—
—

Formalized enumeration

>
e
definition nat from hatom :: hterm atom = nat where
nat from hatom = (SOME f. bij f)
instantiation hterm :: countable begin
instance by countable datatype
end
Llemma infinite hatoms: infinite (UNIV :: 't atom set)
<proof>
Llemma nat from hatom bij: bij nat from hatom
proof -
have countable (UNIV :: hterm atom set) by simp
moreover
have infinite (UNIV :: hterm atom set) using infinite hatoms by auto
ultimately
obtain x where bij (x :: hterm atom = nat) using countableE infinite by blast
then show 7thesis using ... somel by metis
ged

DTU Compute, Technical University of Denmark 21

HE

Formalized semantic trees

e

peT p—F
qeT q-F
- \
r(c)~»T r(c)~F
22

DTU Compute, Technical University of Denmark

—]
—
—

i

Formalized semantic trees

Finite trees: / \

datatype tree =
Leaf p-T p—F

| Branching tree tree ////// ‘\\\\~
q-T

q-F

N

r(c)~»T r(c)~F

DTU Compute, Technical University of Denmark 22

—]
—
—

i

Formalized semantic trees

Finite trees: / \

datatype tree =

Leaf peT p—F
| Branching tree tree ////// ‘\\\\~
qeT g—F
Paths: N
r(c)~»T r(c)~F

type synonym path = bool list

DTU Compute, Technical University of Denmark 22

HE

Formalized semantic trees

Finite trees: / \

datatype tree =

Leaf poT p-F
| Branching tree tree ////// ‘\\\\~
qeT g—F
Paths: N
r(c)~»T r(c)~F

type synonym path = bool list

Possibly infinrte trees:

type synonym inftree = path set

path set = bool where

abbreviation wf tree ::
(ds @ d) ¢ T — ds € T)

wf tree T = (Vds d.
22

DTU Compute, Technical University of Denmark

M

Falsification by partial interpretation

DTU Compute, Technical University of Denmark 23

M

Falsification by partial interpretation

Falsification of ground clause:
{p~T, g~F, r(c)~ T} falsifies {q,7r(c)}

DTU Compute, Technical University of Denmark 23

M

Falsification by partial interpretation

Falsification of ground clause:
{p—T, q~F, r(c)~ T} falsifies {q,r(c)}

abbreviation falsifiesy :: path = fterm clause = bool where
falsifiesy G C = ground C A (VL € C. falsifies G 1)

DTU Compute, Technical University of Denmark 23

Falsification by partial interpretation

Falsification of ground clause:
{p—T, q~F, r(c)~ T} falsifies {q,r(c)}

abbreviation falsifiesy :: path = fterm clause = bool where
falsifiesy G C = ground C A (VL € C. falsifies G 1)

Falsification of FO clause:
{p—T, g~F, r(c)~»T} falsifies {q,~r(x)}

DTU Compute, Technical University of Denmark

M

23

Falsification by partial interpretation

Falsification of ground clause:
{p—T, q~F, r(c)~ T} falsifies {q,r(c)}

abbreviation falsifiesy :: path = fterm clause = bool where
falsifiesy G C = ground C A (VL € C. falsifies G 1)

Falsification of FO clause:
{p—T, g~F, r(c)~»T} falsifies {q,~r(x)}

abbreviation falsifies :: path = fterm clause = bool where

falsifies G C = (4C'. instance of C' C A falsifiesy G C'")

DTU Compute, Technical University of Denmark

HE

23

=
—
—

i

Closed semantic tree

Definition of closed semantic tree:
All branches falsify a ground instance of a clause in Cs

DTU Compute, Technical University of Denmark 24

—]
—
' —

i

Closed semantic tree

Definition of closed semantic tree:
All branches falsify a ground instance of a clause in Cs

Cs =4{ {~q,7p}, {rx)}, {7p.q, (¥}, {p}}

T

peT

/\

q-F

N

r(c)~T r(c)—~F

sity of Denmark

DTU Compute, Technical Univer

M

Closed semantic tree

Definition of closed semantic tree:
All branches falsify a ground instance of a clause in Cs

Cs ={ {~q,7p}, {rx)}, {7p.q, ()}, {p}}

PN

/ \
1T, q-Th

qeF
/ \ falsifies
{—q,7p}

r(c)~T r(c)—~F

DTU Compute, Technical University of Denmark

M

Closed semantic tree

Definition of closed semantic tree:
All branches falsify a ground instance of a clause in Cs

Cs =4{ {~q,7p}, {rx)}, {7p.q, ()}, {p}}

N

pT
/ N {p»T, qF 10T}
- falsities
g~ {

—p.q,7r(C);
/ I oround instance of

r(C)l—)T r(C)HF {_Ipaqa_'r(y)}
24

DTU Compute, Technical University of Denmark

M

Closed semantic tree

Definition of closed semantic tree:
All branches falsify a ground instance of a clause in Cs

Cs =4{ {~q,7p}, {rx)}, {7p.q,r(¥)}, {p}}

N

pT
/ \ {pHT, q—F,r(c)~T}
aoF falsifies
- {r(c)}
e \ sround Instance of
r(c)~T r(c)~F {r(x)}

DTU Compute, Technical University of Denmark

HE

Closed semantic tree

Definrtion of closed semantic tree:
All branches falsify a ground instance of a clause in Cs

Cs ={ {~q,7p}, {rx)}, {7p.q, ()}, {p}}

TN

pT
/ \ {p>F)
qF falsifies
N 1P}
r(c)~T r(c)—~F

DTU Compute, Technical University of Denmark

=
—
—

Completeness proof

i

|. Herbrand's theorem:

Any unsatisfiable set of clauses has a finrte closed
semantic tree.

2. {} i1s derivable from any set of clauses with a
closed semantic tree.

The proof follows Chang & Lee (1973).

DTU Compute, Technical University of Denmark 25

Completeness proof
L |. Herbrand’s theorem

Herbrand’s theorem:

Any unsatisfiable set of clauses Cs has a finite
closed semantic tree.

Proof:

Let T be a full infinite semantic tree.

Consider any infinite p path in T.

p Is an interpretation and thus falsifies Cs.

A (finite) prefix also falsifies Cs.

Let T” be a copy of T with all paths replaced with
finite falsifying prefixes.

T’ is finite by Kénig's lemma.

DTU Compute, Technical University of Denmark

26

—
—
—

i

HE

Completeness proof
L |. Herbrand’s theorem

Herbrand’s theorem:

Any unsatisfiable set of clauses Cs has a finite

closed semantic tree.
p I1s an interpretation?

Proof: | |
A path Is a list of bools.

An Interpretation Is a

fun sym = 'u list = 'u

and a
pred sym = 'u list = bool

Let T be a full infinite semantic tree.

Consider any infinite p path in T.
p Is an interpretation and thus falsifies Cs. <

A (finite) prefix also falsifies Cs.

Let T” be a copy of T with all paths replaced with
finite falsifying prefixes.

T’ is finite by Kénig's lemma.

DTU Compute, Technical University of Denmark 26

HE

Completeness proof
L |. Herbrand’s theorem

Herbrand’s theorem:

Any unsatisfiable set of clauses Cs has a finite
closed semantic tree.

Proof p Is an interpretation?
A path Is a list of bools.
Let T be a full infinite semantic tree. An interpretation IS q
Consider any infinite p path in T. fun sym = 'u list = 'u
p Is an interpretation and thus falsifies Cs. < and a
A (finite) prefix also falsifies Cs. pred sym = 'u list = bool

Let T” be a copy of T with all paths replaced with
finite falsifying prefixes. Yes, we can make a

T’ is finite by Konig’s lemma. conversion function

extend.
DTU Compute, Technical University of Denmark 26

Completeness proof
L |. Herbrand’s theorem

Herbrand’s theorem:

Any unsatisfiable set of clauses Cs has a finite

closed semantic tree.

Proof:

Let T be a full infinite semantic tree.

Consider any infinite p path in T.
p Is an interpretation and thus falsifies Cs.

A (finite) prefix also falsifies Cs. <
Let T” be a copy of T with all paths replaced with
finite falsifying prefixes.

T’ is finite by Kénig's lemma.

Does It/

DTU Compute, Technical University of Denmark

HE

26

=
—
—

i

Completeness proof
L |. Herbrand’s theorem

T an infinite path falsifies a set of clauses, then so

does a finite prefix.

FO clause set

Cs falsified by

Interpretation extend p
Partial Cs falsified by
interpretation prefix of P

DTU Compute, Technical University of Denmark 27

=
—
—

i

Completeness proof
L |. Herbrand’s theorem

T an infinite path falsifies a set of clauses, then so

does a finite prefix.

FO clause set | Ground clause set

Cs falsified by

Interpretation extend p
Partial Cs falsified by
interpretation prefix of P

DTU Compute, Technical University of Denmark 27

=
—
—

i

Completeness proof
L |. Herbrand’s theorem

T an infinite path falsifies a set of clauses, then so

does a finite prefix.

FO clause set | Ground clause set

Cs falsified by Cs' falsified by

Interpretation extend p extend p
Partial Cs falsified by
interpretation prefix of p

DTU Compute, Technical University of Denmark 27

=
—
—

i

Completeness proof
L |. Herbrand’s theorem

T an infinite path falsifies a set of clauses, then so

does a finite prefix.

FO clause set | Ground clause set

Cs falsified by Cs' falsified by

Interpretation extend p — extend p
Partial Cs falsified by
interpretation prefix of p

DTU Compute, Technical University of Denmark 27

=
—
—

i

Completeness proof
L |. Herbrand’s theorem

T an infinite path falsifies a set of clauses, then so

does a finite prefix.

FO clause set | Ground clause set

Cs falsified by L Cs' falsified by

Interpretation extend p extend p
Partial Cs falsified by Cs' falsified by
interpretation prefix of P prefix of p

DTU Compute, Technical University of Denmark 27

=
—
—

i

Completeness proof
L |. Herbrand’s theorem

T an infinite path falsifies a set of clauses, then so

does a finite prefix.

FO clause set | Ground clause set

Cs falsified by L Cs' falsified by

Interpretation extend p extend p
Partial Cs falsified by Cs' falsified by
interpretation prefix of P prefix of p

DTU Compute, Technical University of Denmark 27

=
—
—

i

Completeness proof
L |. Herbrand’s theorem

T an infinite path falsifies a set of clauses, then so

does a finite prefix.

FO clause set | Ground clause set

Cs falsified by L Cs' falsified by

Interpretation extend p extend p
Partial Cs falsified by L Cs' falsified by
interpretation prefix of P prefix of p

DTU Compute, Technical University of Denmark 27

M

Completeness proof
L |. Herbrand’s theorem

DTU Compute, Technical University of Denmark 28

=
—
—

i

Completeness proof

L 2. Deriving {}

DTU Compute, Technical University of Denmark 28

—]
=
' —

i

Completeness proof

L 2. Deriving {}

}N% closed semantic tree for Cs

q-F

N

r(c)~T r(c)~F

DTU Compute, Technical University of Denmark 28

—]
=
' —

i

Completeness proof

L 2. Deriving {}

/}}% closed semantic tree for Cs

q—F
N
r(c)~T r(c)~F
l l falsifies
Ci @)

DTU Compute, Technical University of Denmark 28

HE

Completeness proof

L 2. Deriving {}

/}}% closed semantic tree for Cs

q—F
N
r(c)~T r(c)~F
l l falsifies
Ci @)

DTU Compute, Technical University of Denmark 28

Completeness proof

L 2. Deriving {}

/}}% closed semantic tree for Cs

q—F
P
r(c)~T r(c)~F
l l falsifies
Ci @)

DTU Compute, Technical University of Denmark

HE

28

M

Completeness proof

L 2. Deriving {}

/}}% closed semantic tree for Cs U {C}

q-F

‘ l l Isiﬂes
Cq (>

DTU Compute, Technical University of Denmark 28

M

Completeness proof

L 2. Deriving {}

/}}% closed semantic tree for Cs U {C}

q-F

DTU Compute, Technical University of Denmark 28

M

Completeness proof

L 2. Deriving {}

&}% closed semantic tree for Cs U {C}

q-F

DTU Compute, Technical University of Denmark 28

M

Completeness proof

L 2. Deriving {}

\}% closed semantic tree for Cs U {C}

q-F

DTU Compute, Technical University of Denmark 28

M

Completeness proof

L 2. Deriving {}

Eventually the empty tree is closed for our Cs.

hen we have derived {}.

DTU Compute, Technical University of Denmark 29

Completeness proof

L 2. Deriving {}

\}% closed semantic tree for Cs

q—F
P
r(c)~T r(c)~F
l l falsifies
Ci @)

DTU Compute, Technical University of Denmark

HE

30

HE

Completeness proof

L 2. Deriving {}

\}% closed semantic tree for Cs

q—F
N
r(c)~T r(c)~F
l l falsifies
Ci @)

DTU Compute, Technical University of Denmark 30

HE

Completeness proof

L 2. Deriving {}

\}% closed semantic tree for Cs

q-F

N

r(c)~»T r(c)~F

l l falsifies

Ci C>

T T instance of
Cy C'

DTU Compute, Technical University of Denmark 30

HE

Completeness proof

L 2. Deriving {}

\}% closed semantic tree for Cs

q-F

N

r(c)~»T r(c)~F

l l falsifies
Ci)
T T instance of
Cy C)'
C’
30

DTU Compute, Technical University of Denmark

M

Completeness proof

L 2. Deriving {}

\}% closed semantic tree for Cs

q-F

N

r(c)~»T r(c)~F

l l falsifies

Cl C2 falsifies

T T instance of

C' C)' .
by arguments about enumeration

CI
30

DTU Compute, Technical University of Denmark

Completeness proof

L 2. Deriving {}

\}% closed semantic tree for Cs

q-F

N

r(c)~»T r(c)~F

l l falsifies

Cl C2 falsifies
T T iInstance of

Ct C)'

CI

DTU Compute, Technical University of Denmark

M

30

Completeness proof

L 2. Deriving {}

\}% closed semantic tree for Cs

q—F
N
r(c)~T r(c)~F
l l falsifies
Ci @)
T C T instance of

falsifies

Ct C)'
C’

DTU Compute, Technical University of Denmark

M

30

Completeness proof

L 2. Deriving {}

\}% closed semantic tree for Cs

q-F

N

r(c)~»T r(c)~F

l l falsifies

Cq C» falsifies
T C T instance of

Cy T Co'

CI

DTU Compute, Technical University of Denmark

M

30

M

Completeness proof

L 2. Deriving {}

\}% closed semantic tree for Cs

q-F

N

r(c)~»T r(c)~F

l l falsifies

Cl C2 falsifies

T C T instance of B

o T X by the lifting lemma

CI
30

DTU Compute, Technical University of Denmark

HE

Lifting lemma

t means instantiation, e.g. C1" instance of Ci

Co’ sround

DTU Compute, Technical University of Denmark 3

M

Lifting lemma

t means instantiation, e.g. C1" instance of Ci

Black: Assumptions
Green: Established by lemma

Ci &)

Cy’ Co’ sround
CI

DTU Compute, Technical University of Denmark 3

—]
=
—

i

Lifting lemma

t means instantiation, e.g. C1" instance of Ci

Black: Assumptions
Green: Established by lemma

{p(), p(»),q(y)} {-r,p2)}

{p(c), q(c)} {1, p(c)} oround
1q(c),r}

DTU Compute, Technical University of Denmark 32

—]
=
—

i

Lifting lemma

t means instantiation, e.g. C1" instance of Ci

Black: Assumptions
Green: Established by lemma

{p(), p(»),q(y)} {-r,p2)}
{q(z),r}

{p(c), q(c)} T {—r,7p(c)} ground
{q(c),r}

DTU Compute, Technical University of Denmark 32

=
—
—

i

Lifting lemma

Challenge |: Showing the existence of MGUs.
Solution: Reuse theorem from IsaloR.

Challenge 2: Proof by Chang & Lee (1973) 1s flawed.

DTU Compute, Technical University of Denmark 33

M

Lifting lemma

Let
C =((C,A)06 — L,o)u((C,A)0 — L,0)
= (C,)0 — ({L,",.... L'} A)a) U (C,)0 — ({L,", L7} A)o)
= (Cy(Aoo) — {L,,...,L}}(Aoa)) U (Cy(doa) — {L,", ..., L%} (/o 0)).

C 1s a resolvent of C, and C,. Clearly, C’ is an instance of C since
C=(Cyy=L/ypu(Cy—L;"y)
= ((C, 0y —({L,", ..., LY}0)y) U (C,0)y —({L,", ..., LT} 6)y)
= (Cy(0oy) — {L,",...,LY}(B07) U (Ca(007y) — {L,', ..., L7} (0o 7))
and Ao o 1s more general than 0oy. Thus we complete the proof of this

lemma.

- Chang & Lee (1973)

DTU Compute, Technical University of Denmark 34

M

Lifting lemma

Let
C =((C,A)06 — L,o)u((C,A)0 — L,0)
= (C,)0 — ({L,",.... L'} A)a) U (C,)0 — ({L,", L7} A)o)
= (Cy(Aeo) — {L,',..., L7} (Ao 0)) U (Cy(hoo) — {L,', ..., L%} (Ao 0)).

C 1s a resolvent of C, and C,. Clearly, (" is an instance of C since

C'=(Cyy=Lyy)u(C)y—L,"y)
= ((C, 0y —({L,",....,LY}0)y) U (C, 0)y —({L,,...,L?}0)y)
= (Cy(0ey) —{L,",...,L1"} (7)) U(Cy(0oy) — {L,',..., L7} (807))

and Ac o 1s more general than 0¢7y. Thus we complete the proof of this

lemma.

- Chang & Lee (1973)

DTU Compute, Technical University of Denmark 34

M

Lifting lemma

The flaw was already discovered by Lertsch

(Mathematical Logic Quarterly, 1989).

Chang & Lee do resolution on factors of clauses and

remove literals before applying substrtution.

Other calculi (e.g. by Leitsch (1997)) remove Iiterals
dfter applying substrtution.

This allows for a simple proof of the lifting lemma.

DTU Compute, Technical University of Denmark 35

—]
=
—

i

Completeness

The lifting lemma completes the completeness proof.

theorem completeness:
assumes finite Cs A (VCeCs. finite C)
assumes V(F::hterm fun denot) (G::hterm pred denot). —eval F G Cs

shows dCs'. resolution deriv Cs Cs' A {} € Cs'

<proof>

DTU Compute, Technical University of Denmark 36

Conclusion

Soundness and completeness of resolution Is formalized.

M

[t was particularly challenging to formalize the lifting lemma.

Avallable in the Isalol repository + AFP:

bitbucket.org/jasmin_blanchette/isafol/

isa-afp.org/entries/Resolution_FOL.shtml

| am now working on extensions (ordered resolution,
redundancy, selection) to get closer to the theory of

modern AlP’s that use the superposition calculus.

DTU Compute, Technical University of Denmark

37

http://bitbucket.org/jasmin_blanchette/isafol/

References

A machine-oriented logic based on the resolution principle
J.A.Robinson, J.LACM, 1965

Mathematical Logic for Computer Science
M. Ben-Ari, 3rd ed, Springer, 2012

Symbolic Logic and Mechanical Theorem Proving
C.L.Chang and R.C.T. Lee,Academic Press, 1973

The Resolution Calculus
A. Leitsch, Springer, 1997

IsaFoR (Isabelle Formalization of Rewriting)
cl-informatik.uibk.ac.at/software/ceta/

IsaFoR developers

On different concepts of resolution
A. Leitsch, Mathematical Logic Quarterly, 1989

For precise references to the related work, see my paper.

Picture of J. A. Robinson by D. Monniaux [CC BY-SA 3.0], via Wikimedia Commons

DTU Compute, Technical University of Denmark

=
—
—

i

38

