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+ is a proof calculus for FO CNF formulas.  P(x) A (q(y) V 1(x))
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The resolution calculus for first-order logic
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+ is a proof calculus for FO CNF formulas.  P(x) A (q(y) V 1(x))

- plain logic without types, sorts, equality

* |5 a refutation proof calculus.

* was Introduced by

J.A. Robinson, |. ACM, 1965.

1930-2016

* 15 used In automatic theorem provers

Vampire
(e.g. E, SPASS, Vampire).
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The resolution calculus for propositional logic

Clashing Iiterals
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Motivation
IsaFolL project J1F LR
Isabelle Formalization of Logic g

The formalization is part of Isalol.

[salFol. = library of basic results In automated reasoning.

New calculi or calculus variants can be easily developed

directly in Isabelle.
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IsaFolL

» Completeness of FOL
Blanchette, Popescu, Traytel (I|CAR 2014)

« CDCL with extensions
Blanchette, Fleury, Weidenbach (I|CAR 2016)

« FO resolution
Schlichtkrull (ITP 2016)
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» Completeness of FOL
Blanchette, Popescu, Traytel (I|CAR 2014)

« CDCL with extensions
Blanchette, Fleury, Weidenbach (I|CAR 2016)

, . FO resolution : |
Schlichtkrull (ITP 2016) |
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Related work

* FO model theory
Harrison in HOL Light (TPHOL 1998)

- FO (but no terms) sequent calculus
Margetson, Ridge In Isabelle/HOL (AFP 2004)

* FO (but no terms) verified prover
Margetson, Ridge In Isabelle/HOL (TPHOL 2005)

* FO sequent calculus
Brasenmann, Koepke in Mizar (Formalized Mathematics 2005)

» Soundness of HOL Light
Harrison in HOL Light (IJCAR 2006)

« FO natural deduction
Berghofer in Isabelle/HOL (AFP 2007)
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Related work

» Constructive completeness proofs
ik in Cog (PhD thesis 2010)

» FO sequent calculus and uncountable languages
Schloder;, Koepke in Mizar (Formalized Mathematics 2012)

» Godel's iIncompleteness
Paulson in Isabelle/HOL (JAR 2015)

* Soundness of HOL Light with definitions
Kumar, Arthan, Myreen, Owens (JAR 2016)

* The Incredible Proof Machine
Breitner, Lohner in Isabelle/HOL (ITP 2016)

* FO axiomatic system (soundness only)
Jensen, Schlichtkrull, Villadsen in Isabelle/HOL (lsabelle Workshop 2016)
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Books | followed

Symbolic Logic and Alexander Leitsch
Mechanical Theorem Proving

Mordechai Ben-Ari i:gi:Al;eI;ilcf:;’;‘:,(,\C LEE The RESOIUtlon
R Calculus

Mathematical
Logic for

Computer Science

Third Edition

ACADEMIC PRESS
,\ oy New York San Francisco  London
LL Sp rl nge r A Subsidisry of Haecourt Beace Jovasovich, Publinhen

Ben-Ari Chang and Lee Lertsch
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Tools | used

Isabelle/jEdit

Isar

Proof methods of Isabelle; auto, blast, metis

Sledgehammer

DTU Compute, Technical University of Denmark
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Clausal first-order logic

Terms: x; y; f(c, x); £(y, f(x, ¢))

datatype fterm =

Var var-sym
| Fun fun-sym (fterm list)

Herbrand (ground) terms: c; d; f(c, d); 1(d, f(c, ¢))

datatype hterm =
HFun fun-sym (hterm list)
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Clausal first-order logic
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Clausal first-order logic

Atoms: p(c, x); q(d)

type-synonym 't atom = pred-sym * 't list
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Clausal first-order logic

Atoms: p(c, x); q(d)

type-synonym 't atom = pred-sym * 't list

Literals: p(c, x); ~q(d)

datatype 't literal =
Pos pred-sym ('t list)
| Neg pred-sym ('t list)
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Clausal first-order logic

Atoms: p(c, x); q(d)

type-synonym 't atom = pred-sym * 't list

Literals: p(c, x); ~q(d)

datatype 't literal =
Pos pred-sym ('t list)
| Neg pred-sym ('t list)

Clauses: Vx y z. p(x,y) v q(2) v q(a)

type-synonym 't clause = 't literal set
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From propositional resolution to FO resolution

rvp -rv(q

PVvVd

{r,py {-r,q}
1P, qJ
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From propositional resolution to FO resolution

rvp -rv(q

PVvVd

{r,py {-r,q}
1P, qJ

r(x), 1(y), p(y); 17r(c), g

7

DTU Compute, Technical University of Denmark



Machinery
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Machinery

Complement of a literal:
p(x, y)©==p(x, y); =q(t(x))< = q(t(x))

fun complement :: 't literal = 't literal where
(Pos P ts)® = Neg P ts
| (Neg P ts)¢ = Pos P ts
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i

Complement of a literal:
p(x, y)©==p(x, y); =q(t(x))< = q(t(x))

fun complement :: 't literal = 't literal where
(Pos P ts)® = Neg P ts
| (Neg P ts)¢ = Pos P ts

Complement of a set of literals:
{p(x, y), ~q(f(x)) ;< = {7p(x, ), q(t(x)) }

abbreviation complements :: 't literal set = 't literal set where
L* = complement ~ L

DTU Compute, Technical University of Denmark 13
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Machinery

Substitutions:
{xrc,yrdp; {x-1i(x,y), 2~ y}

type synonym substitution = var-sym = fterm
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Machinery

Substitutions:
{xepc,yrd}; {x~1(x,y), 2~ y}

type synonym substitution = var-sym = fterm

Application:
f(x, gy) - x> ¢,y md} =1(c, g(d))

:: fterm = substitution = fterm where

fun sub
(Var x) - 0 = 0 X
| (Fun f ts) - ¢ = Fun T (map (At. t - o) ts)

DTU Compute, Technical University of Denmark
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Machinery

Unifier:
{p(x,Vy),p(z, ¢)} hasunifier {x»c,y~cC,z~ C}

definition unifier :: substitution = fterm literal set = bool

where

unifier ¢ L «— (dL'. VL € L. L - 0o = 1")
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Machinery

Unifier:
{p(x,Vy),p(z, ¢)} hasunifier {x»c,y~cC,z~ C}

definition unifier :: substitution = fterm literal set = bool

where
unifier ¢ L «— (dL'. VL € L. L - 0o = 1")

Most general unifier:
1P(x, y), p(z, )} has MGU {x = x,y = ¢,z X}

definition mgu :: substitution = fterm literal set = bool where
=0 - 1))

mgu 0 L «— unifier ¢ L A (VYu. unifier u L — (di. u

DTU Compute, Technical University of Denmark
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FO resolution

(1 and C> share no variables,
Cq C»
. . . . LiCCy, L C (Cy,
(Cr =Ly U(C2 — L)) OOMGUforLlLJLzC
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FO resolution

Ci C, C1 and C; share no variables,
L L ngcla ngcz,
(Cr =Ly U = L))" 0 5 MGU for LiULy

E.g. we can resolve

{r(x), r(y), p(y); {—r(c),qr
{p(c), q}

because {r(x), r(y)} U {r(¢c)} has MGU {x » ¢,y ¢}
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Formalization of FO resolution
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Formalization of FO resolution

definition applicable C; C; L1 Ly 0 «—

GA{I NG #AA{IANL #{} AN L #{}
A vars C; N vars C = {}
AL CC AL CGC
A mgu o (L U Ly, &)
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Formalization of FO resolution

definition applicable C; C; L1 Ly 0 «—
GA{I NG #AA{IANL #{} AN L #{}
A vars C; N vars C = {}
AL CC AL CGC
A mgu o (L U Ly, &)

definition resolution C; C, Ly L, ¢ = ((C; - L;) U (C, - Ly)) - o
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Formalization of FO resolution

definition applicable C; C; L1 Ly 0 «—
G A A{rANG#{} AL #A{} AL #{}
A vars C; N vars C = {}
AL € C AL CG
A mgu o (L U Ly, &)

definition resolution C; C, Ly L, 0 = ((C; - L) U (C, - Ly)) - o

inductive resolution step
fterm clause set = fterm clause set = bool where

resolution rule:
C, € (s = (, € (s — applicable C; G L; Ly, 0 =

resolution step Cs (Cs U {resolution C; C, Ly Ly, o})

| standardize apart:
C € Cs = var _renaming of C C' = resolution step Cs (Cs U {C'})
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Formalization of FO resolution

definition applicable C; C; L1 Ly 0 «—
G A A{rANG#{} AL #A{} AL #{}
A vars C; N vars C = {}
AL € C AL CG
A mgu o (L U Ly, &)

definition resolution C; C, Ly L, 0 = ((C; - L) U (C, - Ly)) - o

inductive resolution step
fterm clause set = fterm clause set = bool where

resolution rule:
C, € (s = (, € (s — applicable C; G L; Ly, 0 =

resolution step Cs (Cs U {resolution C; C, Ly Ly, o})

| standardize apart:
C € Cs = var _renaming of C C' = resolution step Cs (Cs U {C'})

rtranclp resolution step

definition resolution deriv
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Refutational completeness
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Refutational completeness

Refutational completeness:
if C Is unsatisfiable then the calculus can derive a contradiction
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Refutational completeness

Refutational completeness:
if C Is unsatisfiable then the calculus can derive a contradiction

unsatisfiable C — (C + {})
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Semantic tree
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Semantic tree

Enumeration of ground terms: p, q, 1(c), ...
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Semantic tree

Enumeration of ground terms: p, q, 1(c), ...

TN

p-T pF

/ \
q-T q-F

/ \
r(c)~T r(c)~F
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Semantic tree

Enumeration of ground terms: p, q, 1(c), ...

TN

pHT p- F

/ \
qeT q-F

/ \
r(c)~T r(c)~F

Semantic trees are decision trees assigning True and False to

the ground atoms.
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Semantic tree

Enumeration of ground terms: p, q, 1(c), ...

TN

p-T pF

/ \
q-T q-F

/ \
r(c)~T r(c)~F

Semantic trees are decision trees assigning True and False to

the ground atoms.

Node on depth 1 makes decision for atom 1.

DTU Compute, Technical University of Denmark
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Semantic tree

A path represents a partial (Herbrand) interpretation.

e

p-T pF

N
qeT q—F

N

r(c)»T r(c)~F
Eo {p~T, q~F,r(c)~F}

DTU Compute, Technical University of Denmark 20
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Formalized enumeration
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Formalized enumeration

definition nat from hatom :: hterm atom = nat where

nat from hatom = (SOME f. bij f)

DTU Compute, Technical University of Denmark
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Formalized enumeration

definition nat from hatom :: hterm atom = nat where

nat from hatom = (SOME f. bij f)

instantiation hterm :: countable begin
instance by countable datatype

end

DTU Compute, Technical University of Denmark
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Formalized enumeration

definition nat from hatom :: hterm atom = nat where
nat from hatom = (SOME f. bij f)

instantiation hterm :: countable begin

instance by countable datatype

end

Llemma infinite hatoms: infinite (UNIV :: 't atom set)
<proof>

DTU Compute, Technical University of Denmark
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e
definition nat from hatom :: hterm atom = nat where
nat from hatom = (SOME f. bij f)
instantiation hterm :: countable begin
instance by countable datatype
end
Llemma infinite hatoms: infinite (UNIV :: 't atom set)
<proof>
Llemma nat from hatom bij: bij nat from hatom
proof -
have countable (UNIV :: hterm atom set) by simp
moreover
have infinite (UNIV :: hterm atom set) using infinite hatoms by auto
ultimately
obtain x where bij (x :: hterm atom = nat) using countableE infinite by blast
then show 7thesis using ... somel by metis
ged

DTU Compute, Technical University of Denmark
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Formalized enumeration

>
e
definition nat from hatom :: hterm atom = nat where
nat from hatom = (SOME f. bij f)
instantiation hterm :: countable begin
instance by countable datatype
end
Llemma infinite hatoms: infinite (UNIV :: 't atom set)
<proof>
Llemma nat from hatom bij: bij nat from hatom
proof -
have countable (UNIV :: hterm atom set) by simp
moreover
have infinite (UNIV :: hterm atom set) using infinite hatoms by auto
ultimately
obtain x where bij (x :: hterm atom = nat) using countableE infinite by blast
then show 7thesis using ... somel by metis
ged
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Formalized semantic trees

e

peT p—F
qeT q-F
- \
r(c)~»T r(c)~F
22
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Formalized semantic trees

Finite trees: / \

datatype tree =
Leaf p-T p—F

| Branching tree tree ////// ‘\\\\~
q-T

q-F

N

r(c)~»T r(c)~F
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Formalized semantic trees

Finite trees: / \

datatype tree =

Leaf peT p—F
| Branching tree tree ////// ‘\\\\~
qeT g—F
Paths: N
r(c)~»T r(c)~F

type synonym path = bool list
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Formalized semantic trees

Finite trees: / \

datatype tree =

Leaf poT p-F
| Branching tree tree ////// ‘\\\\~
qeT g—F
Paths: N
r(c)~»T r(c)~F

type synonym path = bool list

Possibly infinrte trees:

type synonym inftree = path set

path set = bool where

abbreviation wf tree ::
(ds @ d) ¢ T — ds € T)

wf tree T = (Vds d.
22
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Falsification by partial interpretation
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Falsification by partial interpretation

Falsification of ground clause:
{p~T, g~F, r(c)~ T} falsifies {q,7r(c)}
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Falsification by partial interpretation

Falsification of ground clause:
{p—T, q~F, r(c)~ T} falsifies {q,r(c)}

abbreviation falsifiesy :: path = fterm clause = bool where
falsifiesy G C = ground C A (VL € C. falsifies G 1)
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Falsification by partial interpretation

Falsification of ground clause:
{p—T, q~F, r(c)~ T} falsifies {q,r(c)}

abbreviation falsifiesy :: path = fterm clause = bool where
falsifiesy G C = ground C A (VL € C. falsifies G 1)

Falsification of FO clause:
{p—T, g~F, r(c)~»T} falsifies {q,~r(x)}

DTU Compute, Technical University of Denmark
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Falsification by partial interpretation

Falsification of ground clause:
{p—T, q~F, r(c)~ T} falsifies {q,r(c)}

abbreviation falsifiesy :: path = fterm clause = bool where
falsifiesy G C = ground C A (VL € C. falsifies G 1)

Falsification of FO clause:
{p—T, g~F, r(c)~»T} falsifies {q,~r(x)}

abbreviation falsifies :: path = fterm clause = bool where

falsifies G C = (4C'. instance of C' C A falsifiesy G C'")

DTU Compute, Technical University of Denmark
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Closed semantic tree

Definition of closed semantic tree:
All branches falsify a ground instance of a clause in Cs
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Closed semantic tree

Definition of closed semantic tree:
All branches falsify a ground instance of a clause in Cs

Cs =4{ {~q,7p}, {rx)}, {7p.q, (¥}, {p}}

T

peT

/\

q-F

N

r(c)~T r(c)—~F

sity of Denmark
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Closed semantic tree

Definition of closed semantic tree:
All branches falsify a ground instance of a clause in Cs

Cs ={ {~q,7p}, {rx)}, {7p.q, ()}, {p}}

PN

/ \
1T, q-Th

qeF
/ \ falsifies
{—q,7p}

r(c)~T r(c)—~F
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Closed semantic tree

Definition of closed semantic tree:
All branches falsify a ground instance of a clause in Cs

Cs =4{ {~q,7p}, {rx)}, {7p.q, ()}, {p}}

N

pT
/ N {p»T, qF 10T}
- falsities
g~ {

—p.q,7r(C);
/ I oround instance of

r(C)l—)T r(C)HF {_Ipaqa_'r(y)}
24
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Closed semantic tree

Definition of closed semantic tree:
All branches falsify a ground instance of a clause in Cs

Cs =4{ {~q,7p}, {rx)}, {7p.q,r(¥)}, {p}}

N

pT
/ \ {pHT, q—F,r(c)~T}
aoF falsifies
- {r(c)}
e \ sround Instance of
r(c)~T r(c)~F {r(x)}
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Closed semantic tree

Definrtion of closed semantic tree:
All branches falsify a ground instance of a clause in Cs

Cs ={ {~q,7p}, {rx)}, {7p.q, ()}, {p}}

TN

pT
/ \ {p>F)
qF falsifies
N 1P}
r(c)~T r(c)—~F
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Completeness proof

i

|. Herbrand's theorem:

Any unsatisfiable set of clauses has a finrte closed
semantic tree.

2. {} i1s derivable from any set of clauses with a
closed semantic tree.

The proof follows Chang & Lee (1973).

DTU Compute, Technical University of Denmark 25



Completeness proof
L |. Herbrand’s theorem

Herbrand’s theorem:

Any unsatisfiable set of clauses Cs has a finite
closed semantic tree.

Proof:

Let T be a full infinite semantic tree.

Consider any infinite p path in T.

p Is an interpretation and thus falsifies Cs.

A (finite) prefix also falsifies Cs.

Let T” be a copy of T with all paths replaced with
finite falsifying prefixes.

T’ is finite by Kénig's lemma.

DTU Compute, Technical University of Denmark
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Completeness proof
L |. Herbrand’s theorem

Herbrand’s theorem:

Any unsatisfiable set of clauses Cs has a finite

closed semantic tree.
p I1s an interpretation?

Proof: | |
A path Is a list of bools.

An Interpretation Is a

fun sym = 'u list = 'u

and a
pred sym = 'u list = bool

Let T be a full infinite semantic tree.

Consider any infinite p path in T.
p Is an interpretation and thus falsifies Cs. <

A (finite) prefix also falsifies Cs.

Let T” be a copy of T with all paths replaced with
finite falsifying prefixes.

T’ is finite by Kénig's lemma.

DTU Compute, Technical University of Denmark 26
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Completeness proof
L |. Herbrand’s theorem

Herbrand’s theorem:

Any unsatisfiable set of clauses Cs has a finite
closed semantic tree.

Proof p Is an interpretation?
A path Is a list of bools.
Let T be a full infinite semantic tree. An interpretation IS q
Consider any infinite p path in T. fun sym = 'u list = 'u
p Is an interpretation and thus falsifies Cs. < and a
A (finite) prefix also falsifies Cs. pred sym = 'u list = bool

Let T” be a copy of T with all paths replaced with
finite falsifying prefixes. Yes, we can make a

T’ is finite by Konig’s lemma. conversion function

extend.
DTU Compute, Technical University of Denmark 26




Completeness proof
L |. Herbrand’s theorem

Herbrand’s theorem:

Any unsatisfiable set of clauses Cs has a finite

closed semantic tree.

Proof:

Let T be a full infinite semantic tree.

Consider any infinite p path in T.
p Is an interpretation and thus falsifies Cs.

A (finite) prefix also falsifies Cs. <
Let T” be a copy of T with all paths replaced with
finite falsifying prefixes.

T’ is finite by Kénig's lemma.

Does It/

DTU Compute, Technical University of Denmark
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Completeness proof
L |. Herbrand’s theorem

T an infinite path falsifies a set of clauses, then so

does a finite prefix.

FO clause set

Cs falsified by

Interpretation extend p
Partial Cs falsified by
interpretation prefix of P

DTU Compute, Technical University of Denmark 27
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Completeness proof
L |. Herbrand’s theorem

T an infinite path falsifies a set of clauses, then so

does a finite prefix.

FO clause set | Ground clause set

Cs falsified by

Interpretation extend p
Partial Cs falsified by
interpretation prefix of P
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Completeness proof
L |. Herbrand’s theorem

T an infinite path falsifies a set of clauses, then so

does a finite prefix.

FO clause set | Ground clause set

Cs falsified by Cs' falsified by

Interpretation extend p extend p
Partial Cs falsified by
interpretation prefix of p
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Completeness proof
L |. Herbrand’s theorem

T an infinite path falsifies a set of clauses, then so

does a finite prefix.

FO clause set | Ground clause set

Cs falsified by Cs' falsified by

Interpretation extend p — extend p
Partial Cs falsified by
interpretation prefix of p
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Completeness proof
L |. Herbrand’s theorem

T an infinite path falsifies a set of clauses, then so

does a finite prefix.

FO clause set | Ground clause set

Cs falsified by L Cs' falsified by

Interpretation extend p extend p
Partial Cs falsified by Cs' falsified by
interpretation prefix of P prefix of p
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Completeness proof
L |. Herbrand’s theorem

T an infinite path falsifies a set of clauses, then so

does a finite prefix.

FO clause set | Ground clause set

Cs falsified by L Cs' falsified by

Interpretation extend p extend p
Partial Cs falsified by Cs' falsified by
interpretation prefix of P prefix of p
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Completeness proof
L |. Herbrand’s theorem

T an infinite path falsifies a set of clauses, then so

does a finite prefix.

FO clause set | Ground clause set

Cs falsified by L Cs' falsified by

Interpretation extend p extend p
Partial Cs falsified by L Cs' falsified by
interpretation prefix of P prefix of p
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Completeness proof
L |. Herbrand’s theorem
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Completeness proof

L 2. Deriving {}
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Completeness proof

L 2. Deriving {}

}N% closed semantic tree for Cs

q-F

N

r(c)~T r(c)~F
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Completeness proof

L 2. Deriving {}

/}}% closed semantic tree for Cs

q—F
N
r(c)~T r(c)~F
l l falsifies
Ci @)
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Completeness proof

L 2. Deriving {}

/}}% closed semantic tree for Cs

q—F
N
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L 2. Deriving {}

/}}% closed semantic tree for Cs

q—F
P
r(c)~T r(c)~F
l l falsifies
Ci @)
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Completeness proof

L 2. Deriving {}

/}}% closed semantic tree for Cs U {C}

q-F

‘ l l Isiﬂes
Cq (>
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Completeness proof

L 2. Deriving {}

/}}% closed semantic tree for Cs U {C}

q-F
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L 2. Deriving {}

&}% closed semantic tree for Cs U {C}
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Completeness proof

L 2. Deriving {}

\}% closed semantic tree for Cs U {C}

q-F
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Completeness proof

L 2. Deriving {}

Eventually the empty tree is closed for our Cs.

hen we have derived {}.
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L 2. Deriving {}

\}% closed semantic tree for Cs

q—F
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l l falsifies
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L 2. Deriving {}

\}% closed semantic tree for Cs

q-F

N

r(c)~»T r(c)~F

l l falsifies

Ci C>

T T instance of
Cy C'
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L 2. Deriving {}

\}% closed semantic tree for Cs

q-F

N

r(c)~»T r(c)~F

l l falsifies
Ci )
T T instance of
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Completeness proof

L 2. Deriving {}

\}% closed semantic tree for Cs

q-F

N

r(c)~»T r(c)~F

l l falsifies

Cl C2 falsifies

T T instance of

C' C)' .
by arguments about enumeration

CI
30
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L 2. Deriving {}

\}% closed semantic tree for Cs
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r(c)~»T r(c)~F

l l falsifies

Cl C2 falsifies
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r(c)~T r(c)~F
l l falsifies
Ci @)
T C T instance of

falsifies

Ct C)'
C’

DTU Compute, Technical University of Denmark

M

30



Completeness proof

L 2. Deriving {}

\}% closed semantic tree for Cs

q-F

N

r(c)~»T r(c)~F

l l falsifies

Cq C» falsifies
T C T instance of
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Completeness proof

L 2. Deriving {}

\}% closed semantic tree for Cs

q-F

N

r(c)~»T r(c)~F

l l falsifies

Cl C2 falsifies

T C T instance of B

o T X by the lifting lemma

CI
30
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Lifting lemma

t means instantiation, e.g. C1" instance of Ci

Co’ sround

DTU Compute, Technical University of Denmark 3
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Lifting lemma

t means instantiation, e.g. C1" instance of Ci

Black: Assumptions
Green: Established by lemma

Ci &)

Cy’ Co’ sround
CI
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Lifting lemma

t means instantiation, e.g. C1" instance of Ci

Black: Assumptions
Green: Established by lemma

{p(), p(»),q(y)} {-r,p2)}

{p(c), q(c)} {1, p(c)} oround
1q(c),r}

DTU Compute, Technical University of Denmark 32



—]
=
—

i

Lifting lemma

t means instantiation, e.g. C1" instance of Ci

Black: Assumptions
Green: Established by lemma

{p(), p(»),q(y)} {-r,p2)}
{q(z),r}

{p(c), q(c)} T {—r,7p(c)} ground
{q(c),r}
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Lifting lemma

Challenge |: Showing the existence of MGUs.
Solution: Reuse theorem from IsaloR.

Challenge 2: Proof by Chang & Lee (1973) 1s flawed.
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Lifting lemma

Let
C =((C,A)06 — L,o)u((C,A)0 — L,0)
= (C, )0 — ({L,",.... L'} A)a) U (C, )0 — ({L,", .... L7} A)o)
= (Cy(Aoo) — {L,,...,L}}(Aoa)) U (Cy(doa) — {L,", ..., L%} (/o 0)).

C 1s a resolvent of C, and C,. Clearly, C’ is an instance of C since
C=(Cyy=L/ypu(Cy—L;"y)
= ((C, 0y —({L,", ..., LY}0)y) U (C,0)y —({L,", ..., LT} 6)y)
= (Cy(0oy) — {L,",...,LY}(B07) U (Ca(007y) — {L,', ..., L7} (0o 7))
and Ao o 1s more general than 0oy. Thus we complete the proof of this

lemma.

- Chang & Lee (1973)
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Lifting lemma

Let
C =((C,A)06 — L,o)u((C,A)0 — L,0)
= (C, )0 — ({L,",.... L'} A)a) U (C, )0 — ({L,", .... L7} A)o)
= (Cy(Aeo) — {L,',..., L7} (Ao 0)) U (Cy(hoo) — {L,', ..., L%} (Ao 0)).

C 1s a resolvent of C, and C,. Clearly, (" is an instance of C since

C'=(Cyy=Lyy)u(C)y—L,"y)
= ((C, 0y —({L,",....,LY}0)y) U (C, 0)y —({L,,...,L?}0)y)
= (Cy(0ey) —{L,",...,L1"} (7)) U(Cy(0oy) — {L,',..., L7} (807))

and Ac o 1s more general than 0¢7y. Thus we complete the proof of this

lemma.

- Chang & Lee (1973)
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Lifting lemma

The flaw was already discovered by Lertsch

(Mathematical Logic Quarterly, 1989).

Chang & Lee do resolution on factors of clauses and

remove literals before applying substrtution.

Other calculi (e.g. by Leitsch (1997)) remove Iiterals
dfter applying substrtution.

This allows for a simple proof of the lifting lemma.
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Completeness

The lifting lemma completes the completeness proof.

theorem completeness:
assumes finite Cs A (VCeCs. finite C)
assumes V(F::hterm fun denot) (G::hterm pred denot). —eval F G Cs

shows dCs'. resolution deriv Cs Cs' A {} € Cs'

<proof>
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Conclusion

Soundness and completeness of resolution Is formalized.

M

[t was particularly challenging to formalize the lifting lemma.

Avallable in the Isalol repository + AFP:

bitbucket.org/jasmin_blanchette/isafol/

isa-afp.org/entries/Resolution_FOL.shtml

| am now working on extensions (ordered resolution,
redundancy, selection) to get closer to the theory of

modern AlP’s that use the superposition calculus.

DTU Compute, Technical University of Denmark
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