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2

p(x) ∧ (q(y) ∨ r(x))• is a proof calculus for FO CNF formulas. 
 

• was introduced by 
   J. A. Robinson, J. ACM, 1965.

Vampire• is used in automatic theorem provers  
(e.g. E, SPASS, Vampire).

- plain logic without types, sorts, equality

P ⊢ ⊥ • is a refutation proof calculus. 
 

1930-2016
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The resolution calculus for propositional logic

        A     A → C2  
C2 ¬C1 →

¬C1 → C1 ⋁ A     ¬A ⋁ C2

C1 ⋁ C2 

Clashing literals
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Motivation

The formalization is part of IsaFoL.

IsaFoL = library of basic results in automated reasoning.

New calculi or calculus variants can be easily developed 
directly in Isabelle.
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IsaFoL

• Completeness of FOL  
      Blanchette, Popescu,  Traytel (IJCAR 2014)

• CDCL with extensions  
      Blanchette, Fleury,  Weidenbach (IJCAR 2016)

• FO resolution  
      Schlichtkrull (ITP 2016)
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• FO model theory  
  Harrison in HOL Light (TPHOL 1998)

•FO (but no terms) sequent calculus  
  Margetson, Ridge in Isabelle/HOL (AFP 2004)

•FO (but no terms) verified prover  
  Margetson, Ridge in Isabelle/HOL (TPHOL 2005)

•FO sequent calculus  
  Brasenmann, Koepke in Mizar (Formalized Mathematics 2005)

•Soundness of HOL Light  
  Harrison in HOL Light (IJCAR 2006)

•FO natural deduction  
  Berghofer in Isabelle/HOL (AFP 2007)

… 

Related work
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…
•Constructive completeness proofs 
  Illik in Coq (PhD thesis 2010)

•FO sequent calculus and uncountable languages  
  Schlöder, Koepke in Mizar (Formalized Mathematics 2012)

•Gödel’s incompleteness  
  Paulson in Isabelle/HOL (JAR 2015)

•Soundness of HOL Light with definitions  
  Kumar,  Arthan, Myreen, Owens (JAR 2016)

•The Incredible Proof Machine  
  Breitner, Lohner in Isabelle/HOL (ITP 2016)

•FO axiomatic system (soundness only)  
  Jensen, Schlichtkrull,  Villadsen in Isabelle/HOL (Isabelle Workshop 2016)  

Related work
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Books I followed
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• Isabelle/jEdit

• Isar

• Proof methods of Isabelle: auto, blast, metis

• Sledgehammer

Tools I used
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Clausal first-order logic

Terms: x; y; f(c, x); f(y, f(x, c))
datatype fterm = 
  Var var-sym  
| Fun fun-sym (fterm list)  

Herbrand (ground) terms: c; d; f(c, d); f(d, f(c, c))
datatype hterm = 
  HFun fun-sym (hterm list) 

10



DTU Compute, Technical University of Denmark

Clausal first-order logic

11



DTU Compute, Technical University of Denmark

Clausal first-order logic

Atoms: p(c, x); q(d)
type-synonym 't atom = pred-sym * 't list

11



DTU Compute, Technical University of Denmark

Clausal first-order logic

Atoms: p(c, x); q(d)
type-synonym 't atom = pred-sym * 't list

Literals: p(c, x); ¬q(d)
datatype 't literal = 
  Pos pred-sym ('t list) 
| Neg pred-sym ('t list)

11



DTU Compute, Technical University of Denmark

Clausal first-order logic

Atoms: p(c, x); q(d)
type-synonym 't atom = pred-sym * 't list

Literals: p(c, x); ¬q(d)
datatype 't literal = 
  Pos pred-sym ('t list) 
| Neg pred-sym ('t list)

Clauses: ∀x y z. p(x, y) ∨ q(z) ∨ q(a)
type-synonym 't clause = 't literal set
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From propositional resolution to FO resolution

r ∨ p     ¬r ∨ q
p ∨ q

{r, p}   {¬r, q}
{p, q}
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From propositional resolution to FO resolution

r ∨ p     ¬r ∨ q
p ∨ q

{r, p}   {¬r, q}
{p, q}

{r(x), r(y), p(y)}   {¬r(c), q}
???
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Machinery
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Machinery

Complement of a literal: 
  p(x, y)C = ¬p(x, y);  ¬q(f(x))C = q(f(x))
fun complement :: 't literal ⇒ 't literal where 
  (Pos P ts)C = Neg P ts   
| (Neg P ts)C = Pos P ts
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Machinery

Complement of a literal: 
  p(x, y)C = ¬p(x, y);  ¬q(f(x))C = q(f(x))
fun complement :: 't literal ⇒ 't literal where 
  (Pos P ts)C = Neg P ts   
| (Neg P ts)C = Pos P ts

Complement of a set of literals: 
 {p(x, y), ¬q(f(x))}C = {¬p(x, y), q(f(x))}
abbreviation complements :: 't literal set ⇒ 't literal set where  
  LC ≡ complement ` L
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 {x ↦ c, y ↦d}; {x ↦ f(x, y), z ↦ y}
type_synonym substitution = var-sym ⇒ fterm
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Machinery

Substitutions: 
 {x ↦ c, y ↦d}; {x ↦ f(x, y), z ↦ y}
type_synonym substitution = var-sym ⇒ fterm

Application: 
  f(x, g(y)) · {x ↦ c, y ↦d} = f(c, g(d))
fun sub  :: fterm ⇒ substitution ⇒ fterm where 
  (Var x) ⋅ σ = σ x  
| (Fun f ts) ⋅ σ = Fun f (map (λt. t ⋅ σ) ts)
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Unifier: 
  {p(x, y), p(z, c)} has unifier {x ↦ c, y ↦ c, z ↦ c}
definition unifier :: substitution ⇒ fterm literal set ⇒ bool 
where 
  unifier σ L ⟷ (∃l'. ∀l ∈ L. l · σ = l')
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Unifier: 
  {p(x, y), p(z, c)} has unifier {x ↦ c, y ↦ c, z ↦ c}
definition unifier :: substitution ⇒ fterm literal set ⇒ bool 
where 
  unifier σ L ⟷ (∃l'. ∀l ∈ L. l · σ = l')

Most general unifier : 
 {p(x, y), p(z, c)} has MGU {x ↦ x, y ↦ c, z ↦ x}
definition mgu :: substitution ⇒ fterm literal set ⇒ bool where 
  mgu σ L ⟷ unifier σ L ∧ (∀u. unifier u L ⟶ (∃i. u = σ ⋅ i))
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C1                  C2
C1 and C2 share no variables, 
L1 ⊆ C1,  L2 ⊆ C2,
σ MGU for L1 ∪ L2

c((C1 — L1) ∪ (C2  — L2)) · σ

E.g. we can resolve 

because {r(x), r(y)} ∪ {r(c)} has MGU {x ↦ c, y ↦ c}

{r(x), r(y), p(y)}   {¬r(c), q}
{p(c), q}
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| standardize_apart: 
    C ∈ Cs ⟹ var_renaming_of C C' ⟹ resolution_step Cs (Cs ∪ {C'})

definition resolution_deriv = rtranclp resolution_step
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Refutational completeness

Refutational completeness: 
  If C is unsatisfiable then the calculus can derive a contradiction
   unsatisfiable C ⟹ (C ⊢ {})
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the ground atoms.
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Enumeration of ground terms:  p, q, r(c), …

 
 
 
 
 
Semantic trees are decision trees assigning True and False to 
the ground atoms.

Node on depth i makes decision for atom i.

Semantic tree
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Semantic tree

20

A path represents a partial (Herbrand) interpretation.

E.g. {p↦T, q↦F, r(c)↦F}
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definition nat_from_hatom :: hterm atom ⇒ nat where 
  nat_from_hatom ≡ (SOME f. bij f)

instantiation hterm :: countable begin 
instance by countable_datatype 
end

lemma infinite_hatoms: infinite (UNIV :: 't atom set) 
<proof>

lemma nat_from_hatom_bij: bij nat_from_hatom 
proof -  
  have countable (UNIV :: hterm atom set) by simp 
  moreover 
  have infinite (UNIV :: hterm atom set) using infinite_hatoms by auto 
  ultimately 
  obtain x where bij (x :: hterm atom ⇒ nat) using countableE_infinite by blast 
  then show ?thesis using … someI by metis 
qed
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Formalized semantic trees

Finite trees:
datatype tree = 
  Leaf 
| Branching tree tree

Paths:
type_synonym path = bool list

Possibly infinite trees:
type_synonym inftree = path set

abbreviation wf_tree :: path set ⇒ bool where 
  wf_tree T ≡ (∀ds d. (ds @ d) ∈ T ⟶ ds ∈ T)
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Falsification of ground clause: 
 {p↦T, q↦F, r(c)↦T} falsifies {q,¬r(c)}
abbreviation falsifiesg :: path ⇒ fterm clause ⇒ bool where 
   falsifiesg G C ≡ ground C ∧ (∀l ∈ C. falsifies G l)

Falsification of FO clause: 
  {p↦T, q↦F, r(c)↦T} falsifies {q,¬r(x)}
abbreviation falsifies :: path ⇒ fterm clause ⇒ bool where 
  falsifies G C ≡ (∃C'. instance_of C' C ∧ falsifiesg G C')

Falsification by partial interpretation
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r(c)↦T

p↦T

r(c)↦F

{p↦F}
falsifies

{p}
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Completeness proof

1. Herbrand’s theorem:  
Any unsatisfiable set of clauses has a finite closed 
semantic tree.

2. {} is derivable from any set of clauses with a 
closed semantic tree.

The proof follows Chang & Lee (1973).
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Completeness proof

Herbrand’s theorem:

Any unsatisfiable set of clauses Cs has a finite 
closed semantic tree.

Proof:

Let T be a full infinite semantic tree.  
Consider any infinite p path in T. 
p is an interpretation and thus falsifies Cs. 
A (finite) prefix also falsifies Cs. 
Let T’ be a copy of  T with all paths replaced with 
finite falsifying prefixes.  
T’ is finite by König’s lemma.
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p is an interpretation? 
A path is a list of bools. 
An interpretation is a
fun_sym  ⇒ 'u list ⇒ 'u 

and a 
pred_sym ⇒ 'u list ⇒ bool

Yes, we can make a
conversion function
extend.
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Completeness proof

Herbrand’s theorem:

Any unsatisfiable set of clauses Cs has a finite 
closed semantic tree.

Proof:

Let T be a full infinite semantic tree.  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If an infinite path falsifies a set of clauses, then so 
does a finite prefix.

27

Interpretation

Partial 
interpretation

FO clause set

Cs falsified by 
extend p

Cs falsified by 
prefix of p

⟹
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1. Herbrand’s theorem 
2. Deriving {}
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Completeness proof

↳

Eventually the empty tree is closed for our Cs.

Then we have derived {}.
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by the lifting lemma



DTU Compute, Technical University of Denmark

Lifting lemma

   means instantiation, e.g. C1ʹ instance of C1
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Lifting lemma

   means instantiation, e.g. C1ʹ instance of C1
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{q(c),¬r}

ground

Black: Assumptions
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Lifting lemma

   means instantiation, e.g. C1ʹ instance of C1

32

{p(x), p(y), q(y)} {¬r,¬p(z)}

{q(z),¬r}

{q(c),¬r}

ground

Black: Assumptions
Green: Established by lemma

{p(c), q(c)} {¬r,¬p(c)}
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Lifting lemma

Challenge 1: Showing the existence of MGUs.
Solution: Reuse theorem from IsaFoR.

Challenge 2: Proof by Chang & Lee (1973) is flawed.
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Lifting lemma

The flaw was already discovered by Leitsch 
(Mathematical Logic Quarterly,1989).

Chang & Lee do resolution on factors of clauses and 
remove literals before applying substitution.

Other calculi (e.g. by Leitsch (1997)) remove literals 
after applying substitution.

This allows for a simple proof of the lifting lemma.
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Completeness

The lifting lemma completes the completeness proof.
theorem completeness: 
  assumes finite Cs ∧ (∀C∈Cs. finite C)  
  assumes ∀(F::hterm fun_denot) (G::hterm pred_denot). ¬eval F G Cs 
  shows ∃Cs'. resolution_deriv Cs Cs' ∧ {} ∈ Cs' 
<proof>
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Conclusion

Soundness and completeness of resolution is formalized.

It was particularly challenging to formalize the lifting lemma.

Available in the IsaFoL repository + AFP: 
bitbucket.org/jasmin_blanchette/isafol/ 
isa-afp.org/entries/Resolution_FOL.shtml

I am now working on extensions (ordered resolution, 
redundancy, selection) to get closer to the theory of 
modern ATP’s that use the superposition calculus.
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