
Formalization of the Resolution Calculus
for First-Order Logic

Anders Schlichtkrull

1

DTU Compute, Technical University of Denmark

The resolution calculus for first-order logic

2

DTU Compute, Technical University of Denmark

The resolution calculus for first-order logic

2

p(x) ∧ (q(y) ∨ r(x))• is a proof calculus for FO CNF formulas. 

DTU Compute, Technical University of Denmark

The resolution calculus for first-order logic

2

p(x) ∧ (q(y) ∨ r(x))• is a proof calculus for FO CNF formulas. 
 - plain logic without types, sorts, equality

DTU Compute, Technical University of Denmark

The resolution calculus for first-order logic

2

p(x) ∧ (q(y) ∨ r(x))• is a proof calculus for FO CNF formulas. 
 - plain logic without types, sorts, equality

P ⊢ ⊥ • is a refutation proof calculus. 

DTU Compute, Technical University of Denmark

The resolution calculus for first-order logic

2

p(x) ∧ (q(y) ∨ r(x))• is a proof calculus for FO CNF formulas. 

• was introduced by 
 J. A. Robinson, J. ACM, 1965.

- plain logic without types, sorts, equality

P ⊢ ⊥ • is a refutation proof calculus. 

DTU Compute, Technical University of Denmark

The resolution calculus for first-order logic

2

p(x) ∧ (q(y) ∨ r(x))• is a proof calculus for FO CNF formulas. 

• was introduced by 
 J. A. Robinson, J. ACM, 1965.

- plain logic without types, sorts, equality

P ⊢ ⊥ • is a refutation proof calculus. 

1930-2016

DTU Compute, Technical University of Denmark

The resolution calculus for first-order logic

2

p(x) ∧ (q(y) ∨ r(x))• is a proof calculus for FO CNF formulas. 

• was introduced by 
 J. A. Robinson, J. ACM, 1965.

Vampire• is used in automatic theorem provers  
(e.g. E, SPASS, Vampire).

- plain logic without types, sorts, equality

P ⊢ ⊥ • is a refutation proof calculus. 

1930-2016

DTU Compute, Technical University of Denmark 3

The resolution calculus for propositional logic

 A A → C2
C2

DTU Compute, Technical University of Denmark 3

The resolution calculus for propositional logic

 A A → C2
C2 ¬C1 →

¬C1 →

DTU Compute, Technical University of Denmark 3

The resolution calculus for propositional logic

 A A → C2
C2 ¬C1 →

¬C1 → C1 ⋁ A ¬A ⋁ C2

C1 ⋁ C2

DTU Compute, Technical University of Denmark 3

The resolution calculus for propositional logic

 A A → C2
C2 ¬C1 →

¬C1 → C1 ⋁ A ¬A ⋁ C2

C1 ⋁ C2

Clashing literals

DTU Compute, Technical University of Denmark

Motivation

The formalization is part of IsaFoL.

IsaFoL = library of basic results in automated reasoning.

New calculi or calculus variants can be easily developed
directly in Isabelle.

4

λ →

∀
=Isa

be
lle

β

α IsaFoL project
Isabelle Formalization of Logic

DTU Compute, Technical University of Denmark

IsaFoL

• Completeness of FOL  
 Blanchette, Popescu, Traytel (IJCAR 2014)

• CDCL with extensions  
 Blanchette, Fleury, Weidenbach (IJCAR 2016)

• FO resolution  
 Schlichtkrull (ITP 2016)

5

DTU Compute, Technical University of Denmark

IsaFoL

• Completeness of FOL  
 Blanchette, Popescu, Traytel (IJCAR 2014)

• CDCL with extensions  
 Blanchette, Fleury, Weidenbach (IJCAR 2016)

• FO resolution  
 Schlichtkrull (ITP 2016)

5

DTU Compute, Technical University of Denmark

• FO model theory  
 Harrison in HOL Light (TPHOL 1998)

•FO (but no terms) sequent calculus  
 Margetson, Ridge in Isabelle/HOL (AFP 2004)

•FO (but no terms) verified prover  
 Margetson, Ridge in Isabelle/HOL (TPHOL 2005)

•FO sequent calculus  
 Brasenmann, Koepke in Mizar (Formalized Mathematics 2005)

•Soundness of HOL Light  
 Harrison in HOL Light (IJCAR 2006)

•FO natural deduction  
 Berghofer in Isabelle/HOL (AFP 2007)

… 

Related work

6

DTU Compute, Technical University of Denmark

…
•Constructive completeness proofs 
 Illik in Coq (PhD thesis 2010)

•FO sequent calculus and uncountable languages  
 Schlöder, Koepke in Mizar (Formalized Mathematics 2012)

•Gödel’s incompleteness  
 Paulson in Isabelle/HOL (JAR 2015)

•Soundness of HOL Light with definitions  
 Kumar, Arthan, Myreen, Owens (JAR 2016)

•The Incredible Proof Machine  
 Breitner, Lohner in Isabelle/HOL (ITP 2016)

•FO axiomatic system (soundness only)  
 Jensen, Schlichtkrull, Villadsen in Isabelle/HOL (Isabelle Workshop 2016)  

Related work

7

DTU Compute, Technical University of Denmark

Books I followed

8

Ben-Ari Chang and Lee Leitsch

DTU Compute, Technical University of Denmark

• Isabelle/jEdit

• Isar

• Proof methods of Isabelle: auto, blast, metis

• Sledgehammer

Tools I used

9

λ
→

∀
=Is

ab
el
le

β

α

HOL

DTU Compute, Technical University of Denmark

Clausal first-order logic

Terms: x; y; f(c, x); f(y, f(x, c))
datatype fterm = 
 Var var-sym  
| Fun fun-sym (fterm list)

Herbrand (ground) terms: c; d; f(c, d); f(d, f(c, c))
datatype hterm = 
 HFun fun-sym (hterm list)

10

DTU Compute, Technical University of Denmark

Clausal first-order logic

11

DTU Compute, Technical University of Denmark

Clausal first-order logic

Atoms: p(c, x); q(d)
type-synonym 't atom = pred-sym * 't list

11

DTU Compute, Technical University of Denmark

Clausal first-order logic

Atoms: p(c, x); q(d)
type-synonym 't atom = pred-sym * 't list

Literals: p(c, x); ¬q(d)
datatype 't literal = 
 Pos pred-sym ('t list) 
| Neg pred-sym ('t list)

11

DTU Compute, Technical University of Denmark

Clausal first-order logic

Atoms: p(c, x); q(d)
type-synonym 't atom = pred-sym * 't list

Literals: p(c, x); ¬q(d)
datatype 't literal = 
 Pos pred-sym ('t list) 
| Neg pred-sym ('t list)

Clauses: ∀x y z. p(x, y) ∨ q(z) ∨ q(a)
type-synonym 't clause = 't literal set

11

DTU Compute, Technical University of Denmark 12

From propositional resolution to FO resolution

r ∨ p ¬r ∨ q
p ∨ q

{r, p} {¬r, q}
{p, q}

DTU Compute, Technical University of Denmark 12

From propositional resolution to FO resolution

r ∨ p ¬r ∨ q
p ∨ q

{r, p} {¬r, q}
{p, q}

{r(x), r(y), p(y)} {¬r(c), q}
???

DTU Compute, Technical University of Denmark

Machinery

13

DTU Compute, Technical University of Denmark

Machinery

Complement of a literal: 
 p(x, y)C = ¬p(x, y); ¬q(f(x))C = q(f(x))
fun complement :: 't literal ⇒ 't literal where 
 (Pos P ts)C = Neg P ts  
| (Neg P ts)C = Pos P ts

13

DTU Compute, Technical University of Denmark

Machinery

Complement of a literal: 
 p(x, y)C = ¬p(x, y); ¬q(f(x))C = q(f(x))
fun complement :: 't literal ⇒ 't literal where 
 (Pos P ts)C = Neg P ts  
| (Neg P ts)C = Pos P ts

Complement of a set of literals: 
 {p(x, y), ¬q(f(x))}C = {¬p(x, y), q(f(x))}
abbreviation complements :: 't literal set ⇒ 't literal set where  
 LC ≡ complement ` L

13

DTU Compute, Technical University of Denmark

Machinery

14

DTU Compute, Technical University of Denmark

Machinery

Substitutions: 
 {x ↦ c, y ↦d}; {x ↦ f(x, y), z ↦ y}
type_synonym substitution = var-sym ⇒ fterm

14

DTU Compute, Technical University of Denmark

Machinery

Substitutions: 
 {x ↦ c, y ↦d}; {x ↦ f(x, y), z ↦ y}
type_synonym substitution = var-sym ⇒ fterm

Application: 
 f(x, g(y)) · {x ↦ c, y ↦d} = f(c, g(d))
fun sub :: fterm ⇒ substitution ⇒ fterm where 
 (Var x) ⋅ σ = σ x  
| (Fun f ts) ⋅ σ = Fun f (map (λt. t ⋅ σ) ts)

14

DTU Compute, Technical University of Denmark

Machinery

15

DTU Compute, Technical University of Denmark

Machinery

Unifier: 
 {p(x, y), p(z, c)} has unifier {x ↦ c, y ↦ c, z ↦ c}
definition unifier :: substitution ⇒ fterm literal set ⇒ bool
where 
 unifier σ L ⟷ (∃l'. ∀l ∈ L. l · σ = l')

15

DTU Compute, Technical University of Denmark

Machinery

Unifier: 
 {p(x, y), p(z, c)} has unifier {x ↦ c, y ↦ c, z ↦ c}
definition unifier :: substitution ⇒ fterm literal set ⇒ bool
where 
 unifier σ L ⟷ (∃l'. ∀l ∈ L. l · σ = l')

Most general unifier : 
 {p(x, y), p(z, c)} has MGU {x ↦ x, y ↦ c, z ↦ x}
definition mgu :: substitution ⇒ fterm literal set ⇒ bool where 
 mgu σ L ⟷ unifier σ L ∧ (∀u. unifier u L ⟶ (∃i. u = σ ⋅ i))

15

DTU Compute, Technical University of Denmark

FO resolution

16

C1 C2
C1 and C2 share no variables, 
L1 ⊆ C1, L2 ⊆ C2,
σ MGU for L1 ∪ L2

c((C1 — L1) ∪ (C2 — L2)) · σ

DTU Compute, Technical University of Denmark

FO resolution

16

C1 C2
C1 and C2 share no variables, 
L1 ⊆ C1, L2 ⊆ C2,
σ MGU for L1 ∪ L2

c((C1 — L1) ∪ (C2 — L2)) · σ

E.g. we can resolve

because {r(x), r(y)} ∪ {r(c)} has MGU {x ↦ c, y ↦ c}

{r(x), r(y), p(y)} {¬r(c), q}
{p(c), q}

DTU Compute, Technical University of Denmark

Formalization of FO resolution

17

DTU Compute, Technical University of Denmark

Formalization of FO resolution
definition applicable C1 C2 L1 L2 σ ⟷  
 C1 ≠ {} ∧ C2 ≠ {} ∧ L1 ≠ {} ∧ L2 ≠ {} 
 ∧ vars C1 ∩ vars C2 = {}  
 ∧ L1 ⊆ C1 ∧ L2 ⊆ C2  
 ∧ mgu σ (L1 ∪ L2 C)"

17

DTU Compute, Technical University of Denmark

Formalization of FO resolution
definition applicable C1 C2 L1 L2 σ ⟷  
 C1 ≠ {} ∧ C2 ≠ {} ∧ L1 ≠ {} ∧ L2 ≠ {} 
 ∧ vars C1 ∩ vars C2 = {}  
 ∧ L1 ⊆ C1 ∧ L2 ⊆ C2  
 ∧ mgu σ (L1 ∪ L2 C)"

definition resolution C1 C2 L1 L2 σ = ((C1 - L1) ∪ (C2 - L2)) ⋅ σ

17

DTU Compute, Technical University of Denmark

Formalization of FO resolution
definition applicable C1 C2 L1 L2 σ ⟷  
 C1 ≠ {} ∧ C2 ≠ {} ∧ L1 ≠ {} ∧ L2 ≠ {} 
 ∧ vars C1 ∩ vars C2 = {}  
 ∧ L1 ⊆ C1 ∧ L2 ⊆ C2  
 ∧ mgu σ (L1 ∪ L2 C)"

definition resolution C1 C2 L1 L2 σ = ((C1 - L1) ∪ (C2 - L2)) ⋅ σ

inductive resolution_step  
 :: fterm clause set ⇒ fterm clause set ⇒ bool where 
 resolution_rule:  
 C1 ∈ Cs ⟹ C2 ∈ Cs ⟹ applicable C1 C2 L1 L2 σ ⟹  
 resolution_step Cs (Cs ∪ {resolution C1 C2 L1 L2 σ})  
| standardize_apart: 
 C ∈ Cs ⟹ var_renaming_of C C' ⟹ resolution_step Cs (Cs ∪ {C'})

17

DTU Compute, Technical University of Denmark

Formalization of FO resolution
definition applicable C1 C2 L1 L2 σ ⟷  
 C1 ≠ {} ∧ C2 ≠ {} ∧ L1 ≠ {} ∧ L2 ≠ {} 
 ∧ vars C1 ∩ vars C2 = {}  
 ∧ L1 ⊆ C1 ∧ L2 ⊆ C2  
 ∧ mgu σ (L1 ∪ L2 C)"

definition resolution C1 C2 L1 L2 σ = ((C1 - L1) ∪ (C2 - L2)) ⋅ σ

inductive resolution_step  
 :: fterm clause set ⇒ fterm clause set ⇒ bool where 
 resolution_rule:  
 C1 ∈ Cs ⟹ C2 ∈ Cs ⟹ applicable C1 C2 L1 L2 σ ⟹  
 resolution_step Cs (Cs ∪ {resolution C1 C2 L1 L2 σ})  
| standardize_apart: 
 C ∈ Cs ⟹ var_renaming_of C C' ⟹ resolution_step Cs (Cs ∪ {C'})

definition resolution_deriv = rtranclp resolution_step

17

DTU Compute, Technical University of Denmark

Refutational completeness

18

DTU Compute, Technical University of Denmark

Refutational completeness

Refutational completeness: 
 If C is unsatisfiable then the calculus can derive a contradiction

18

DTU Compute, Technical University of Denmark

Refutational completeness

Refutational completeness: 
 If C is unsatisfiable then the calculus can derive a contradiction
 unsatisfiable C ⟹ (C ⊢ {})

18

DTU Compute, Technical University of Denmark

Semantic tree

19

DTU Compute, Technical University of Denmark

Enumeration of ground terms: p, q, r(c), …

Semantic tree

19

DTU Compute, Technical University of Denmark

Enumeration of ground terms: p, q, r(c), …

Semantic tree

19

DTU Compute, Technical University of Denmark

Enumeration of ground terms: p, q, r(c), …

 
 
 
 
 
Semantic trees are decision trees assigning True and False to
the ground atoms.

Semantic tree

19

DTU Compute, Technical University of Denmark

Enumeration of ground terms: p, q, r(c), …

 
 
 
 
 
Semantic trees are decision trees assigning True and False to
the ground atoms.

Node on depth i makes decision for atom i.

Semantic tree

19

DTU Compute, Technical University of Denmark

Semantic tree

20

A path represents a partial (Herbrand) interpretation.

E.g. {p↦T, q↦F, r(c)↦F}

DTU Compute, Technical University of Denmark

Formalized enumeration

21

DTU Compute, Technical University of Denmark

Formalized enumeration

definition nat_from_hatom :: hterm atom ⇒ nat where 
 nat_from_hatom ≡ (SOME f. bij f)

21

DTU Compute, Technical University of Denmark

Formalized enumeration

definition nat_from_hatom :: hterm atom ⇒ nat where 
 nat_from_hatom ≡ (SOME f. bij f)

instantiation hterm :: countable begin 
instance by countable_datatype 
end

21

DTU Compute, Technical University of Denmark

Formalized enumeration

definition nat_from_hatom :: hterm atom ⇒ nat where 
 nat_from_hatom ≡ (SOME f. bij f)

instantiation hterm :: countable begin 
instance by countable_datatype 
end

lemma infinite_hatoms: infinite (UNIV :: 't atom set) 
<proof>

21

DTU Compute, Technical University of Denmark

Formalized enumeration

definition nat_from_hatom :: hterm atom ⇒ nat where 
 nat_from_hatom ≡ (SOME f. bij f)

instantiation hterm :: countable begin 
instance by countable_datatype 
end

lemma infinite_hatoms: infinite (UNIV :: 't atom set) 
<proof>

lemma nat_from_hatom_bij: bij nat_from_hatom 
proof -  
 have countable (UNIV :: hterm atom set) by simp 
 moreover 
 have infinite (UNIV :: hterm atom set) using infinite_hatoms by auto 
 ultimately 
 obtain x where bij (x :: hterm atom ⇒ nat) using countableE_infinite by blast 
 then show ?thesis using … someI by metis 
qed

21

DTU Compute, Technical University of Denmark

Formalized enumeration

definition nat_from_hatom :: hterm atom ⇒ nat where 
 nat_from_hatom ≡ (SOME f. bij f)

instantiation hterm :: countable begin 
instance by countable_datatype 
end

lemma infinite_hatoms: infinite (UNIV :: 't atom set) 
<proof>

lemma nat_from_hatom_bij: bij nat_from_hatom 
proof -  
 have countable (UNIV :: hterm atom set) by simp 
 moreover 
 have infinite (UNIV :: hterm atom set) using infinite_hatoms by auto 
 ultimately 
 obtain x where bij (x :: hterm atom ⇒ nat) using countableE_infinite by blast 
 then show ?thesis using … someI by metis 
qed

21

DTU Compute, Technical University of Denmark

Formalized semantic trees

22

DTU Compute, Technical University of Denmark

Formalized semantic trees

Finite trees:
datatype tree = 
 Leaf 
| Branching tree tree

22

DTU Compute, Technical University of Denmark

Formalized semantic trees

Finite trees:
datatype tree = 
 Leaf 
| Branching tree tree

Paths:
type_synonym path = bool list

22

DTU Compute, Technical University of Denmark

Formalized semantic trees

Finite trees:
datatype tree = 
 Leaf 
| Branching tree tree

Paths:
type_synonym path = bool list

Possibly infinite trees:
type_synonym inftree = path set

abbreviation wf_tree :: path set ⇒ bool where 
 wf_tree T ≡ (∀ds d. (ds @ d) ∈ T ⟶ ds ∈ T)

22

DTU Compute, Technical University of Denmark

Falsification by partial interpretation

23

DTU Compute, Technical University of Denmark

Falsification of ground clause: 
 {p↦T, q↦F, r(c)↦T} falsifies {q,¬r(c)}

Falsification by partial interpretation

23

DTU Compute, Technical University of Denmark

Falsification of ground clause: 
 {p↦T, q↦F, r(c)↦T} falsifies {q,¬r(c)}
abbreviation falsifiesg :: path ⇒ fterm clause ⇒ bool where 
 falsifiesg G C ≡ ground C ∧ (∀l ∈ C. falsifies G l)

Falsification by partial interpretation

23

DTU Compute, Technical University of Denmark

Falsification of ground clause: 
 {p↦T, q↦F, r(c)↦T} falsifies {q,¬r(c)}
abbreviation falsifiesg :: path ⇒ fterm clause ⇒ bool where 
 falsifiesg G C ≡ ground C ∧ (∀l ∈ C. falsifies G l)

Falsification of FO clause: 
 {p↦T, q↦F, r(c)↦T} falsifies {q,¬r(x)}

Falsification by partial interpretation

23

DTU Compute, Technical University of Denmark

Falsification of ground clause: 
 {p↦T, q↦F, r(c)↦T} falsifies {q,¬r(c)}
abbreviation falsifiesg :: path ⇒ fterm clause ⇒ bool where 
 falsifiesg G C ≡ ground C ∧ (∀l ∈ C. falsifies G l)

Falsification of FO clause: 
 {p↦T, q↦F, r(c)↦T} falsifies {q,¬r(x)}
abbreviation falsifies :: path ⇒ fterm clause ⇒ bool where 
 falsifies G C ≡ (∃C'. instance_of C' C ∧ falsifiesg G C')

Falsification by partial interpretation

23

DTU Compute, Technical University of Denmark

Definition of closed semantic tree: 
 All branches falsify a ground instance of a clause in Cs

 

Closed semantic tree

24

DTU Compute, Technical University of Denmark

Definition of closed semantic tree: 
 All branches falsify a ground instance of a clause in Cs

 

Closed semantic tree

24

Definition of closed semantic tree: 
 All branches falsify a ground instance of a clause in Cs  
Cs = { {¬q,¬p}, {r(x)}, {¬p,q,¬r(y)}, {p}}

p↦F

q↦T q↦F

r(c)↦T

p↦T

r(c)↦F

DTU Compute, Technical University of Denmark

Definition of closed semantic tree: 
 All branches falsify a ground instance of a clause in Cs

 

Closed semantic tree

24

Definition of closed semantic tree: 
 All branches falsify a ground instance of a clause in Cs  
Cs = { {¬q,¬p}, {r(x)}, {¬p,q,¬r(y)}, {p}}

p↦F

q↦T q↦F

r(c)↦T

p↦T

r(c)↦F

Definition of closed semantic tree: 
 All branches falsify a ground instance of a clause in Cs  
Cs = { {¬q,¬p}, {r(x)}, {¬p,q,¬r(y)}, {p}}

p↦F

q↦T q↦F

r(c)↦T

p↦T

r(c)↦F

{p↦T, q↦T}
falsifies

{¬q,¬p}

DTU Compute, Technical University of Denmark

Definition of closed semantic tree: 
 All branches falsify a ground instance of a clause in Cs

 

Closed semantic tree

24

Definition of closed semantic tree: 
 All branches falsify a ground instance of a clause in Cs  
Cs = { {¬q,¬p}, {r(x)}, {¬p,q,¬r(y)}, {p}}

p↦F

q↦T q↦F

r(c)↦T

p↦T

r(c)↦F

Definition of closed semantic tree: 
 All branches falsify a ground instance of a clause in Cs  
Cs = { {¬q,¬p}, {r(x)}, {¬p,q,¬r(y)}, {p}}

p↦F

q↦T q↦F

r(c)↦T

p↦T

r(c)↦F

{p↦T, q↦T}
falsifies

{¬q,¬p}

Definition of closed semantic tree: 
 All branches falsify a ground instance of a clause in Cs  
Cs = { {¬q,¬p}, {r(x)}, {¬p,q,¬r(y)}, {p}}

p↦F

q↦T q↦F

r(c)↦T

p↦T

r(c)↦F

{p↦T, q↦F, r(c)↦T}
falsifies

{¬p,q,¬r(c)}
ground instance of

{¬p,q,¬r(y)}

DTU Compute, Technical University of Denmark

Definition of closed semantic tree: 
 All branches falsify a ground instance of a clause in Cs

 

Closed semantic tree

24

Definition of closed semantic tree: 
 All branches falsify a ground instance of a clause in Cs  
Cs = { {¬q,¬p}, {r(x)}, {¬p,q,¬r(y)}, {p}}

p↦F

q↦T q↦F

r(c)↦T

p↦T

r(c)↦F

Definition of closed semantic tree: 
 All branches falsify a ground instance of a clause in Cs  
Cs = { {¬q,¬p}, {r(x)}, {¬p,q,¬r(y)}, {p}}

p↦F

q↦T q↦F

r(c)↦T

p↦T

r(c)↦F

{p↦T, q↦T}
falsifies

{¬q,¬p}

Definition of closed semantic tree: 
 All branches falsify a ground instance of a clause in Cs  
Cs = { {¬q,¬p}, {r(x)}, {¬p,q,¬r(y)}, {p}}

p↦F

q↦T q↦F

r(c)↦T

p↦T

r(c)↦F

{p↦T, q↦F, r(c)↦T}
falsifies

{¬p,q,¬r(c)}
ground instance of

{¬p,q,¬r(y)}

Definition of closed semantic tree: 
 All branches falsify a ground instance of a clause in Cs  
Cs = { {¬q,¬p}, {r(x)}, {¬p,q,¬r(y)}, {p}}

{p↦T, q↦F, r(c)↦T}
falsifies
{r(c)}

ground instance of
{r(x)}

p↦F

q↦T q↦F

r(c)↦T

p↦T

r(c)↦F

DTU Compute, Technical University of Denmark

Definition of closed semantic tree: 
 All branches falsify a ground instance of a clause in Cs

 

Closed semantic tree

24

Definition of closed semantic tree: 
 All branches falsify a ground instance of a clause in Cs  
Cs = { {¬q,¬p}, {r(x)}, {¬p,q,¬r(y)}, {p}}

p↦F

q↦T q↦F

r(c)↦T

p↦T

r(c)↦F

Definition of closed semantic tree: 
 All branches falsify a ground instance of a clause in Cs  
Cs = { {¬q,¬p}, {r(x)}, {¬p,q,¬r(y)}, {p}}

p↦F

q↦T q↦F

r(c)↦T

p↦T

r(c)↦F

{p↦T, q↦T}
falsifies

{¬q,¬p}

Definition of closed semantic tree: 
 All branches falsify a ground instance of a clause in Cs  
Cs = { {¬q,¬p}, {r(x)}, {¬p,q,¬r(y)}, {p}}

p↦F

q↦T q↦F

r(c)↦T

p↦T

r(c)↦F

{p↦T, q↦F, r(c)↦T}
falsifies

{¬p,q,¬r(c)}
ground instance of

{¬p,q,¬r(y)}

Definition of closed semantic tree: 
 All branches falsify a ground instance of a clause in Cs  
Cs = { {¬q,¬p}, {r(x)}, {¬p,q,¬r(y)}, {p}}

{p↦T, q↦F, r(c)↦T}
falsifies
{r(c)}

ground instance of
{r(x)}

p↦F

q↦T q↦F

r(c)↦T

p↦T

r(c)↦F

Definition of closed semantic tree: 
 All branches falsify a ground instance of a clause in Cs  
Cs = { {¬q,¬p}, {r(x)}, {¬p,q,¬r(y)}, {p}}

p↦F

q↦T q↦F

r(c)↦T

p↦T

r(c)↦F

{p↦F}
falsifies

{p}

DTU Compute, Technical University of Denmark

Completeness proof

1. Herbrand’s theorem:  
Any unsatisfiable set of clauses has a finite closed
semantic tree.

2. {} is derivable from any set of clauses with a
closed semantic tree.

The proof follows Chang & Lee (1973).

25

DTU Compute, Technical University of Denmark

Completeness proof

Herbrand’s theorem:

Any unsatisfiable set of clauses Cs has a finite
closed semantic tree.

Proof:

Let T be a full infinite semantic tree.  
Consider any infinite p path in T. 
p is an interpretation and thus falsifies Cs. 
A (finite) prefix also falsifies Cs. 
Let T’ be a copy of T with all paths replaced with
finite falsifying prefixes.  
T’ is finite by König’s lemma.

26

1. Herbrand’s theorem
2. Deriving {}

↳

DTU Compute, Technical University of Denmark

Completeness proof

Herbrand’s theorem:

Any unsatisfiable set of clauses Cs has a finite
closed semantic tree.

Proof:

Let T be a full infinite semantic tree.  
Consider any infinite p path in T. 
p is an interpretation and thus falsifies Cs. 
A (finite) prefix also falsifies Cs. 
Let T’ be a copy of T with all paths replaced with
finite falsifying prefixes.  
T’ is finite by König’s lemma.

26

1. Herbrand’s theorem
2. Deriving {}

↳

p is an interpretation?
A path is a list of bools.
An interpretation is a
fun_sym ⇒ 'u list ⇒ 'u

and a
pred_sym ⇒ 'u list ⇒ bool

DTU Compute, Technical University of Denmark

Completeness proof

Herbrand’s theorem:

Any unsatisfiable set of clauses Cs has a finite
closed semantic tree.

Proof:

Let T be a full infinite semantic tree.  
Consider any infinite p path in T. 
p is an interpretation and thus falsifies Cs. 
A (finite) prefix also falsifies Cs. 
Let T’ be a copy of T with all paths replaced with
finite falsifying prefixes.  
T’ is finite by König’s lemma.

26

1. Herbrand’s theorem
2. Deriving {}

↳

p is an interpretation?
A path is a list of bools.
An interpretation is a
fun_sym ⇒ 'u list ⇒ 'u

and a
pred_sym ⇒ 'u list ⇒ bool

Yes, we can make a
conversion function
extend.

DTU Compute, Technical University of Denmark

Completeness proof

Herbrand’s theorem:

Any unsatisfiable set of clauses Cs has a finite
closed semantic tree.

Proof:

Let T be a full infinite semantic tree.  
Consider any infinite p path in T. 
p is an interpretation and thus falsifies Cs. 
A (finite) prefix also falsifies Cs. 
Let T’ be a copy of T with all paths replaced with
finite falsifying prefixes.  
T’ is finite by König’s lemma.

26

1. Herbrand’s theorem
2. Deriving {}

↳

Does it?

DTU Compute, Technical University of Denmark

If an infinite path falsifies a set of clauses, then so
does a finite prefix.

27

Interpretation

Partial
interpretation

FO clause set

Cs falsified by
extend p

Cs falsified by
prefix of p

⟹

Completeness proof
1. Herbrand’s theorem
2. Deriving {}

↳

DTU Compute, Technical University of Denmark

If an infinite path falsifies a set of clauses, then so
does a finite prefix.

27

Interpretation

Partial
interpretation

FO clause set

Cs falsified by
extend p

Cs falsified by
prefix of p

Ground clause set

⟹

Completeness proof
1. Herbrand’s theorem
2. Deriving {}

↳

DTU Compute, Technical University of Denmark

If an infinite path falsifies a set of clauses, then so
does a finite prefix.

27

Interpretation

Partial
interpretation

FO clause set

Cs falsified by
extend p

Cs falsified by
prefix of p

Ground clause set

⟹
Csʹ falsified by
extend p

Completeness proof
1. Herbrand’s theorem
2. Deriving {}

↳

DTU Compute, Technical University of Denmark

If an infinite path falsifies a set of clauses, then so
does a finite prefix.

27

Interpretation

Partial
interpretation

FO clause set

Cs falsified by
extend p

Cs falsified by
prefix of p

Ground clause set

⟹
⟹

Csʹ falsified by
extend p

Completeness proof
1. Herbrand’s theorem
2. Deriving {}

↳

DTU Compute, Technical University of Denmark

If an infinite path falsifies a set of clauses, then so
does a finite prefix.

27

Interpretation

Partial
interpretation

FO clause set

Cs falsified by
extend p

Cs falsified by
prefix of p

Ground clause set

⟹

Csʹ falsified by
prefix of p

⟹
Csʹ falsified by
extend p

Completeness proof
1. Herbrand’s theorem
2. Deriving {}

↳

DTU Compute, Technical University of Denmark

If an infinite path falsifies a set of clauses, then so
does a finite prefix.

27

Interpretation

Partial
interpretation

FO clause set

Cs falsified by
extend p

Cs falsified by
prefix of p

Ground clause set

⟹

Csʹ falsified by
prefix of p

⟹

⟹
Csʹ falsified by
extend p

Completeness proof
1. Herbrand’s theorem
2. Deriving {}

↳

DTU Compute, Technical University of Denmark

If an infinite path falsifies a set of clauses, then so
does a finite prefix.

27

Interpretation

Partial
interpretation

FO clause set

Cs falsified by
extend p

Cs falsified by
prefix of p

Ground clause set

⟹

Csʹ falsified by
prefix of p

⟹

⟹

⟹

Csʹ falsified by
extend p

Completeness proof
1. Herbrand’s theorem
2. Deriving {}

↳

DTU Compute, Technical University of Denmark

1. Herbrand’s theorem
2. Deriving {}

28

Completeness proof
↳

DTU Compute, Technical University of Denmark

1. Herbrand’s theorem
2. Deriving {}

28

Completeness proof
1. Herbrand’s theorem
2. Deriving {}↳

DTU Compute, Technical University of Denmark

1. Herbrand’s theorem
2. Deriving {}

28

Completeness proof
1. Herbrand’s theorem
2. Deriving {}↳

r(c)↦T r(c)↦F

q↦F

closed semantic tree for Cs

DTU Compute, Technical University of Denmark

1. Herbrand’s theorem
2. Deriving {}

28

Completeness proof
1. Herbrand’s theorem
2. Deriving {}↳

falsifies
C1 C2

r(c)↦T r(c)↦F

q↦F

closed semantic tree for Cs

DTU Compute, Technical University of Denmark

1. Herbrand’s theorem
2. Deriving {}

28

Completeness proof
1. Herbrand’s theorem
2. Deriving {}↳

falsifies
C1 C2

C

r(c)↦T r(c)↦F

q↦F

closed semantic tree for Cs

DTU Compute, Technical University of Denmark

1. Herbrand’s theorem
2. Deriving {}

28

Completeness proof
1. Herbrand’s theorem
2. Deriving {}↳

falsifies
C1 C2

C

r(c)↦T r(c)↦F

q↦F

closed semantic tree for Cs

DTU Compute, Technical University of Denmark

1. Herbrand’s theorem
2. Deriving {}

28

Completeness proof
1. Herbrand’s theorem
2. Deriving {}↳

falsifies
C1 C2

C

r(c)↦T r(c)↦F

q↦F

closed semantic tree for Cs ⋃ {C}

DTU Compute, Technical University of Denmark

1. Herbrand’s theorem
2. Deriving {}

28

Completeness proof
1. Herbrand’s theorem
2. Deriving {}↳

q↦F

closed semantic tree for Cs ⋃ {C}

DTU Compute, Technical University of Denmark

1. Herbrand’s theorem
2. Deriving {}

28

Completeness proof
1. Herbrand’s theorem
2. Deriving {}↳

q↦F

closed semantic tree for Cs ⋃ {C}

DTU Compute, Technical University of Denmark

1. Herbrand’s theorem
2. Deriving {}

28

Completeness proof
1. Herbrand’s theorem
2. Deriving {}↳

q↦F

closed semantic tree for Cs ⋃ {C}

DTU Compute, Technical University of Denmark

1. Herbrand’s theorem
2. Deriving {}

29

Completeness proof

↳

Eventually the empty tree is closed for our Cs.

Then we have derived {}.

DTU Compute, Technical University of Denmark

1. Herbrand’s theorem
2. Deriving {}

30

Completeness proof
1. Herbrand’s theorem
2. Deriving {}↳

falsifies
C1 C2

C

r(c)↦T r(c)↦F

q↦F

closed semantic tree for Cs

DTU Compute, Technical University of Denmark

1. Herbrand’s theorem
2. Deriving {}

30

Completeness proof
1. Herbrand’s theorem
2. Deriving {}↳

falsifies
C1 C2

r(c)↦T r(c)↦F

q↦F

closed semantic tree for Cs

DTU Compute, Technical University of Denmark

1. Herbrand’s theorem
2. Deriving {}

30

Completeness proof
1. Herbrand’s theorem
2. Deriving {}↳

falsifies
C1 C2

r(c)↦T r(c)↦F

q↦F

closed semantic tree for Cs

instance of
C1ʹ C2ʹ

DTU Compute, Technical University of Denmark

1. Herbrand’s theorem
2. Deriving {}

30

Completeness proof
1. Herbrand’s theorem
2. Deriving {}↳

falsifies
C1 C2

r(c)↦T r(c)↦F

q↦F

closed semantic tree for Cs

instance of
C1ʹ C2ʹ

 Cʹ

DTU Compute, Technical University of Denmark

1. Herbrand’s theorem
2. Deriving {}

30

Completeness proof
1. Herbrand’s theorem
2. Deriving {}↳

falsifies
C1 C2

r(c)↦T r(c)↦F

q↦F

closed semantic tree for Cs

instance of
C1ʹ C2ʹ

 Cʹ

falsifies

by arguments about enumeration

DTU Compute, Technical University of Denmark

1. Herbrand’s theorem
2. Deriving {}

30

Completeness proof
1. Herbrand’s theorem
2. Deriving {}↳

falsifies
C1 C2

r(c)↦T r(c)↦F

q↦F

closed semantic tree for Cs

instance of
C1ʹ C2ʹ

 Cʹ

falsifies

DTU Compute, Technical University of Denmark

1. Herbrand’s theorem
2. Deriving {}

30

Completeness proof
1. Herbrand’s theorem
2. Deriving {}↳

falsifies
C1 C2

r(c)↦T r(c)↦F

q↦F

closed semantic tree for Cs

instance of
C1ʹ C2ʹ

 Cʹ

falsifies
C

DTU Compute, Technical University of Denmark

1. Herbrand’s theorem
2. Deriving {}

30

Completeness proof
1. Herbrand’s theorem
2. Deriving {}↳

falsifies
C1 C2

r(c)↦T r(c)↦F

q↦F

closed semantic tree for Cs

instance of
C1ʹ C2ʹ

 Cʹ

falsifies
C

DTU Compute, Technical University of Denmark

1. Herbrand’s theorem
2. Deriving {}

30

Completeness proof
1. Herbrand’s theorem
2. Deriving {}↳

falsifies
C1 C2

r(c)↦T r(c)↦F

q↦F

closed semantic tree for Cs

instance of
C1ʹ C2ʹ

 Cʹ

falsifies
C

by the lifting lemma

DTU Compute, Technical University of Denmark

Lifting lemma

 means instantiation, e.g. C1ʹ instance of C1

31

C1 C2

C1ʹ C2ʹ

Cʹ

ground

DTU Compute, Technical University of Denmark

Lifting lemma

 means instantiation, e.g. C1ʹ instance of C1

31

C1 C2

C

C1ʹ C2ʹ

Cʹ

ground

Black: Assumptions
Green: Established by lemma

DTU Compute, Technical University of Denmark

Lifting lemma

 means instantiation, e.g. C1ʹ instance of C1

32

{p(x), p(y), q(y)} {¬r,¬p(z)}

{q(c),¬r}

ground

Black: Assumptions
Green: Established by lemma

{p(c), q(c)} {¬r,¬p(c)}

DTU Compute, Technical University of Denmark

Lifting lemma

 means instantiation, e.g. C1ʹ instance of C1

32

{p(x), p(y), q(y)} {¬r,¬p(z)}

{q(z),¬r}

{q(c),¬r}

ground

Black: Assumptions
Green: Established by lemma

{p(c), q(c)} {¬r,¬p(c)}

DTU Compute, Technical University of Denmark

Lifting lemma

Challenge 1: Showing the existence of MGUs.
Solution: Reuse theorem from IsaFoR.

Challenge 2: Proof by Chang & Lee (1973) is flawed.

33

DTU Compute, Technical University of Denmark

Lifting lemma

34

- Chang & Lee (1973)

DTU Compute, Technical University of Denmark

Lifting lemma

34

- Chang & Lee (1973)

DTU Compute, Technical University of Denmark

Lifting lemma

The flaw was already discovered by Leitsch
(Mathematical Logic Quarterly,1989).

Chang & Lee do resolution on factors of clauses and
remove literals before applying substitution.

Other calculi (e.g. by Leitsch (1997)) remove literals
after applying substitution.

This allows for a simple proof of the lifting lemma.
35

DTU Compute, Technical University of Denmark

Completeness

The lifting lemma completes the completeness proof.
theorem completeness: 
 assumes finite Cs ∧ (∀C∈Cs. finite C)  
 assumes ∀(F::hterm fun_denot) (G::hterm pred_denot). ¬eval F G Cs 
 shows ∃Cs'. resolution_deriv Cs Cs' ∧ {} ∈ Cs' 
<proof>

36

DTU Compute, Technical University of Denmark

Conclusion

Soundness and completeness of resolution is formalized.

It was particularly challenging to formalize the lifting lemma.

Available in the IsaFoL repository + AFP: 
bitbucket.org/jasmin_blanchette/isafol/ 
isa-afp.org/entries/Resolution_FOL.shtml

I am now working on extensions (ordered resolution,
redundancy, selection) to get closer to the theory of
modern ATP’s that use the superposition calculus.

37

http://bitbucket.org/jasmin_blanchette/isafol/

DTU Compute, Technical University of Denmark

References
A machine-oriented logic based on the resolution principle  
 J. A. Robinson, J. ACM, 1965

Mathematical Logic for Computer Science  
 M. Ben-Ari, 3rd ed, Springer, 2012

Symbolic Logic and Mechanical Theorem Proving 
 C. L. Chang and R. C. T. Lee, Academic Press, 1973

The Resolution Calculus 
 A. Leitsch, Springer, 1997

IsaFoR (Isabelle Formalization of Rewriting)  
 cl-informatik.uibk.ac.at/software/ceta/ 
 IsaFoR developers

On different concepts of resolution  
 A. Leitsch, Mathematical Logic Quarterly, 1989

For precise references to the related work, see my paper.

Picture of J. A. Robinson by D. Monniaux [CC BY-SA 3.0], via Wikimedia Commons

38

