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Introduction

Consensus – Motivation

Example

• distributed database

• each at different state

• decide whether to apply transaction

• exchange messages

• all have to arrive at same decision

Problem

processes may crash
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Introduction

The FLP Theorem

Theorem (Fischer, Lynch, Paterson, 1985)

impossible to ensure consensus, if processes may crash

Theorem (Völzer, 2004)

more constructive proof of FLP

Our Work

• based on the more constructive paper of Völzer

• formalizing this proof in Isabelle/HOL

• . . . including “fairness”, which was just stated
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Introduction

Consensus

Model

• finite set of sequential processes

• asynchronous communication channels between all pairs

p0

1

p1

0

p2

0

p3

1

Definition: Binary Consensus

Each process gets an input value from {0, 1} and
may irrevocably decide on a final output value
such that:

• Agreement: No two processes decide
differently.

• Validity: The output value is the input value
of some process.

• Termination: Each process eventually
decides or crashes.

Bisping et al. FLP Constructive Proof 24 August 2016 4 / 15



Introduction

Consensus

Model

• finite set of sequential processes

• asynchronous communication channels between all pairs

p0

1

p1

0

p2

0

p3

1

Definition: Binary Consensus

Each process gets an input value from {0, 1} and
may irrevocably decide on a final output value
such that:

• Agreement: No two processes decide
differently.

• Validity: The output value is the input value
of some process.

• Termination: Each process eventually
decides or crashes.

Bisping et al. FLP Constructive Proof 24 August 2016 4 / 15



Introduction

Consensus

Model

• finite set of sequential processes

• asynchronous communication channels between all pairs

p0

1

p1

0

p2

0

p3

1

Definition: Binary Consensus

Each process gets an input value from {0, 1} and
may irrevocably decide on a final output value
such that:

• Agreement: No two processes decide
differently.

• Validity: The output value is the input value
of some process.

• Termination: Each process eventually
decides or crashes.

Bisping et al. FLP Constructive Proof 24 August 2016 4 / 15



Introduction

Fairness

• easy to obtain undesired behaviour

• “block” process by not processing its messages

Definition: Fair Execution

Each message is processed (as long as receiver not crashed).

• unfair execution practically irrelevant
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Introduction

The FLP Theorem

Theorem (Völzer, 2004)

There is no consensus algorithm such that

• a process may crash

• validity

• agreement

• every fair execution terminates

fundamental result in distributed computing
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Introduction

The FLP Theorem

Theorem (Völzer, 2004)

Every consensus algorithm such that

• a process may crash

• validity

• agreement

has an infinite fair execution that does not decide.

 constructive

Idea of proof

• find invariant that ensures non-decided

• find proper way to extend finite execution, keeping the invariant

• infinite fair run
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Our proof in Isabelle/HOL

Initial Lemma

Non-uniform

There are processes p, q such that

• crash of p allows decision 0

• crash of q allows decision 1

Initial Lemma

There is a non-uniform initial configuration.

Small error in Völzer’s proof

• used same symbol for different configurations

• required adaption in proof
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Our proof in Isabelle/HOL

Extension Lemma

Extension Lemma - Völzer’s version

For each non-uniform configuration c and each process p there is a configuration
c ′ such that c ⇒∗ c ′ and crash of p in c ′ allows for both decisions.

Extension Lemma – our version

• choose message (p,m) – receiver p, content m

• apply Extension Lemma for this p

• can safely consume message (keeping invariant)

all put into single extension
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Our proof in Isabelle/HOL

Extension – Picture
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Our proof in Isabelle/HOL

FLP-Theorem

FLP-Theorem

Each possible consensus algorithm has a fair infinite execution that does not
decide.

Proof by Völzer

• start with non-uniform initial configuration

• take message with minimal enabling time

• extend execution using Extension Lemma,
ending with non-uniform configuration

• repeat this process
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Our proof in Isabelle/HOL

Proof Idea
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Our proof in Isabelle/HOL

Infinite Executions

Problem

• fairness/correctness defined for single (infinite) execution

• construction yields sequence of finite executions

Infinite executions – our model

• as function from natural numbers to finite executions

definition infiniteExecution ::

"(nat ⇒ ((’p, ’v, ’s) configuration list))

⇒ (nat ⇒ ((’p, ’v) message list)) ⇒ bool"

where

"infiniteExecution fe ft ≡
∀ n . execution trans sends start (fe n) (ft n) ∧

prefixList (fe n) (fe (n+1)) ∧
prefixList (ft n) (ft (n+1))"
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Our proof in Isabelle/HOL

Proof of Fairness

Völzer: “We obtain a fair execution
where all processes are correct
and that is always eventually
non-uniform and hence does not decide. �”
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Conclusions

Conclusions

theorem ConsensusFails:

assumes

Termination:

"
∧

fe ft . (fairInfiniteExecution fe ft =⇒ terminationFLP fe ft)" and

Validity: "∀ i c . validity i c" and

Agreement: "∀ i c . agreementInit i c"

shows

"False"

Conclusions

• formalization of Völzer’s proof in Isabelle/HOL

• 2 1
2 pages → 4000 LOC

• precise list of preconditions for individual proofs

• proof of fairness

• correctness up to correctness of Isabelle/HOL

Thank you very much for your attention.
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