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Motivation

Certify Complexity of Matrix Interpretations

• given: automatically generated complexity proof for program

χA = (x − 1) · (−39 + 360x − 832x2 + 512x3)

• criterions
• polynomial complexity if norms of all complex roots of χA 6 1
• degree d in O(nd): more calculations with complex roots of χA

• problem: certifier crashed as numbers got too complicated
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Motivation

Closed Form for Cubic Polynomials

• −39 + 360x − 832x2 + 512x3 = 0 iff
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• problem: calculate and decide

norm(xj) =
√

Re(xj)2 + Im(xj)2 6 1

for all j ∈ {1, 2, 3}
• problem: no closed form for roots of polynomials of degree 5

and higher
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Motivation

Algebraic Numbers

• number x ∈ R ∪ C is algebraic iff it is root of non-zero
rational polynomial

• x1 = “root #1 of −39 + 360x − 832x2 + 512x3”
• x2 = “root #2 of −39 + 360x − 832x2 + 512x3”
• x3 = “root #3 of −39 + 360x − 832x2 + 512x3”

Figure: −39 + 360x − 832x2 + 512x3
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Motivation

Problems with Algebraic Numbers

• well-definedness

Sturm’s method

is there a “root #3 of −23 + x − 5x2 + x3”

• representation

factorization of rational polynomials

is there a simpler representation of “root #3 of
−108− 72x + 108x2 + 84x3 − 27x4 − 32x5 − 2x6 + 4x7 + x8”

• comparisons

Sturm’s method

is “root #3 of −39 + 360x − 832x2 + 512x3” smaller than 1

• arithmetic

matrices, determinants, resultants, . . .

calculate a polynomial representing
“root #2 of −2 + x2” + “root #1 of −3 + x2”
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Motivation

Problems with Algebraic Numbers
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Motivation

Main Result: Formalization of Algebraic Numbers

• common properties on algebraic numbers (R and C)

• executable real algebraic numbers

• executable complex algebraic numbers indirectly

• easy to use via data-refinement for R and C

bnorm(
√

3
√

2 + 3 + 2i) · 100c evaluate
↪→ 216

• applicable inside (eval) and outside Isabelle (export-code)
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Motivation

Related work

• Cyril Cohen (ITP 2012)
• Coq
• similar, but partly based on different paper proofs
• our work: more focus on efficient execution

• Wenda Li and Larry Paulson (CPP 2016)
• independant Isabelle/HOL formalization, different approach
• oracle (MetiTarski) performs computations
• certified code validates results

• experimental comparison (examples of Li and Paulson)

MetiTarski 1.83 seconds (@ 2.66 Ghz)
+ validation of Li and Paulson 4.16 seconds (@ 2.66 Ghz)
Our generated Haskell code 0.03 seconds (@ 3.5 Ghz)
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Real Algebraic Numbers Well-Definedness

Well-Definedness

• “root #3 of −23 + x − 5x2 + x3”

• “root #3 of −25 + 155x − 304x2 + 192x3”
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Real Algebraic Numbers Well-Definedness

Sturm’s Method

• input
• polynomial over R
• interval ( [2, 5], (−π, 7], (−∞, 3), or (−∞,+∞) )

• output: count-roots p itval
• number of distinct real roots of p in interval itval

• formalized in Isabelle by Manuel Eberl

• nearly used as black-box

• adapted functions to work over Q
number of distinct real roots of polynomial over Q

in interval over Q
reason: apply Sturm’s method to implement R
formalization: locale for homomorphisms

• precompute first phase of Sturm’s method
⇒ query many intervals for same polynomial more efficiently

Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 10/22



Real Algebraic Numbers Well-Definedness

Sturm’s Method

• input
• polynomial over R
• interval ( [2, 5], (−π, 7], (−∞, 3), or (−∞,+∞) )

• output: count-roots p itval
• number of distinct real roots of p in interval itval

• formalized in Isabelle by Manuel Eberl

• nearly used as black-box

• adapted functions to work over Q
number of distinct real roots of polynomial over Q

in interval over Q
reason: apply Sturm’s method to implement R
formalization: locale for homomorphisms

• precompute first phase of Sturm’s method
⇒ query many intervals for same polynomial more efficiently

Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 10/22



Real Algebraic Numbers Well-Definedness

Sturm’s Method

• input
• polynomial over R
• interval ( [2, 5], (−π, 7], (−∞, 3), or (−∞,+∞) )

• output: count-roots p itval
• number of distinct real roots of p in interval itval

• formalized in Isabelle by Manuel Eberl

• nearly used as black-box
• adapted functions to work over Q

number of distinct real roots of polynomial over Q
in interval over Q

reason: apply Sturm’s method to implement R
formalization: locale for homomorphisms

• precompute first phase of Sturm’s method
⇒ query many intervals for same polynomial more efficiently

Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 10/22



Real Algebraic Numbers Well-Definedness

Sturm’s Method

• input
• polynomial over R
• interval ( [2, 5], (−π, 7], (−∞, 3), or (−∞,+∞) )

• output: count-roots p itval
• number of distinct real roots of p in interval itval

• formalized in Isabelle by Manuel Eberl

• nearly used as black-box
• adapted functions to work over Q

number of distinct real roots of polynomial over Q
in interval over Q

reason: apply Sturm’s method to implement R
formalization: locale for homomorphisms

• precompute first phase of Sturm’s method
⇒ query many intervals for same polynomial more efficiently

Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 10/22



Real Algebraic Numbers Well-Definedness

Applying Sturm’s Method for Well-Definedness

“root #3 of −25 + 155x − 304x2 + 192x3”

count-roots (−25 + 155x − 304x2 + 192x3) (−∞,+∞) = 2
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Real Algebraic Numbers Well-Definedness

Representation of Real Algebraic Numbers – Part 1

• quadruple
• polynomial over Q: p
• left and right interval bound ∈ Q: l and r
• precomputation of Sturm for p: root-info
• (flag for factorization information on p)

• representing real number

THE x ∈ [l , r ]. rpoly p x = 0

• five invariants
• p 6= 0
• root-info = count-roots p
• root-info [l , r ] = 1
• . . .

• invariants are ensured via a subtype (typedef)
• new type of quadruples satisfying invariants
• lift-definition and transfer for function definitions and proofs
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Real Algebraic Numbers Calculating Real Roots of Rational Polynomial

Real Roots of Rational Polynomial

input: non-zero polynomial over Q
output: list of real algebraic numbers representing the roots

1. factorize input polynomial over Q into pm1
1 · . . . · pmn

n

2. apply the following steps on each pi

3. determine root-infoi for pi and initial bounds li , ri such that

root-infoi (−∞,+∞) = root-infoi [li , ri ]

4. perform bisection on [li , ri ] to obtain intervals which all
contain a single root of pi
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Real Algebraic Numbers Calculating Real Roots of Rational Polynomial

Example

• input: χA

• computation:
• 39− 399x + 1192x2 − 1344x3 + 512x4

• todo = {}

•

• output:

(x − 1, [1, 1]) , (pi , [0,
3
8 ]) , (pi , [

3
8 ,

3
4 ]) , (pi , [

3
4 ,

3
2 ])
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Real Algebraic Numbers Calculating Real Roots of Rational Polynomial

Example

• initial bounds: 6 = degree pi ·max{d|ci |e. ci coefficient of pi}

• computation:
• (x − 1) · (−39 + 360x − 832x2 + 512x3)

• todo = {[−6, 6]}

•

• output: (x − 1, [1, 1])

, (pi , [0,
3
8 ]) , (pi , [

3
8 ,

3
4 ]) , (pi , [

3
4 ,

3
2 ])
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Real Algebraic Numbers Calculating Real Roots of Rational Polynomial

Example

• bisection

• computation:
• (x − 1) · (−39 + 360x − 832x2 + 512x3)

• todo = {[−6, 0], [0, 6]}

•

• output: (x − 1, [1, 1])

, (pi , [0,
3
8 ]) , (pi , [

3
8 ,

3
4 ]) , (pi , [

3
4 ,

3
2 ])
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Real Algebraic Numbers Calculating Real Roots of Rational Polynomial

Example

• bisection

• computation:
• (x − 1) · (−39 + 360x − 832x2 + 512x3)

• todo = {[0, 3], [3, 6]}

•

• output: (x − 1, [1, 1])

, (pi , [0,
3
8 ]) , (pi , [

3
8 ,

3
4 ]) , (pi , [

3
4 ,

3
2 ])
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Real Algebraic Numbers Calculating Real Roots of Rational Polynomial

Example

• bisection

• computation:
• (x − 1) · (−39 + 360x − 832x2 + 512x3)

• todo = {[0, 32 ], [ 32 , 3], [3, 6]}

•

• output: (x − 1, [1, 1])

, (pi , [0,
3
8 ]) , (pi , [

3
8 ,

3
4 ]) , (pi , [

3
4 ,

3
2 ])
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Real Algebraic Numbers Calculating Real Roots of Rational Polynomial

Example

• bisection

• computation:
• (x − 1) · (−39 + 360x − 832x2 + 512x3)

• todo = {[0, 34 ], [ 34 ,
3
2 ], [ 32 , 3], [3, 6]}

•

• output: (x − 1, [1, 1])

, (pi , [0,
3
8 ]) , (pi , [

3
8 ,

3
4 ]) , (pi , [
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4 ,
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Real Algebraic Numbers Calculating Real Roots of Rational Polynomial

Bisection Algorithm

• bisection takes root-info as parameter for efficiency

• does not terminate (e.g., pass λx .2)

• definition as partial-function to obtain code-equations

• soundness via well-founded induction;
order based on minimal distance between roots of pi
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Real Algebraic Numbers Factorizing Rational Polynomial

Factorization of Rational Polynomials

• important for efficiency: keep polynomials small

• time/degree of representing polynomials for
∑n

i=1

√
i

factorization n = 8 n = 9 n = 10

none 2m11s/256 22m19s/512 12h19m/1024
square-free 2m14s/256 15m31s/384 9h31m/768
full 0.35s/16 0.35s/16 0.59s/16

• algorithm

• apply certified square-free factorization

− 108− 72x + 108x2 + 84x3 − 27x4 − 32x5 − 2x6 + 4x7 + x8

= (− 3 + x2)2 · (− 12− 8x + 4x2 + 4x3 + x4)1

• invoke oracle on each factor

−12− 8x + 4x2 + 4x3 + x4 oracle
= (−2 + x2) · (6 + 4x + x2)

• check equality at runtime, not irreducibility
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Real Algebraic Numbers Factorizing Rational Polynomial

Simplification of Representation

Consider
p(x) = −108−72x + 108x2 + 84x3−27x4−32x5−2x6 + 4x7 + x8

THE root of p in [1, 1.5]

= THE root of (−3 + x2) · (6 + 4x + x2) · (−2 + x2) in [1, 1.5]

= THE root of −2 + x2 in [1, 1.5]

(=
√

2)
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Real Algebraic Numbers Factorizing Rational Polynomial

Comparison of Real Algebraic Numbers

1. decide whether (p, [l , r ]) and (q, [l ′, r ′]) encode same number

THE root of p in [l , r ] = THE root of q in [l ′, r ′]

⇐⇒ gcd p q has real root in [l , r ] ∩ [l ′, r ′]

2. if not, tighten bounds of both numbers via bisection until
intervals are disjoint
(bisection algorithm again defined by partial-function)

Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 18/22



Real Algebraic Numbers Arithmetic on Real Algebraic Numbers

Arithmetic on Real Algebraic Numbers

how to perform operations like +, −, ×, /, n
√
·, etc. on

algebraic numbers (p, [l , r ]) and (q, [l ′, r ′])?

1. determine polynomial
• negation: p(−x)
• n
√
·: p(xn)

• addition: resultant(p(x − y), q(y))

2. compute initial interval, e.g. [l + l ′, r + r ′] for addition

3. tighten intervals [l , r ] and [l ′, r ′] until resulting interval
contains unique root

4. optimize representation
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Real Algebraic Numbers Arithmetic on Real Algebraic Numbers

Increase Efficiency, Representation – Part 2

• factorizations in between to simplify representations

• efficient (not optimal) computation of resultants and GCDs

• tuned algorithms on polynomials

• special treatment for rational numbers

datatype real_alg_3 =

Rational rat

| Irrational "quadruple with invariants"

typedef real_alg_4 = "real_alg_3 with invariant"

definition real_of_4 :: real_alg_4 => real

quotient_type real_alg =

real_alg_4 / "% x y. real_of_4 x = real_of_4 y"
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Complex Algebraic Numbers

Complex Algebraic Numbers in Isabelle

• missing: equivalent of Sturm’s method for C

• take existing Cartesian representation: (Re(x), Im(x))

• only new difficulty: find complex roots, e.g., of p = 1 + x + x3

• basic idea:

• complex roots of rational polynomials come in complex
conjugate pairs

⇒ if x is root of p then x̄ is root of p
⇒ Re(x) = 1

2 (x + x̄) is root of the polynomial for 1
2 � (p ⊕ p)

⇒ Im(x) = 1
2i (x − x̄) is root of the polynomial for 1

2i � (p 	 p)
⇒ compute all these roots

and filter: for all candidates z = Re(x) + Im(x)i , test p(z) = 0
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Complex Algebraic Numbers

Complex Algebraic Numbers in Isabelle

• missing: equivalent of Sturm’s method for C
• take existing Cartesian representation: (Re(x), Im(x))

• only new difficulty: find complex roots, e.g., of p = 1 + x + x3

• basic idea:

• complex roots of rational polynomials come in complex
conjugate pairs

⇒ if x is root of p then x̄ is root of p
⇒ Re(x) = 1

2 (x + x̄) is root of the polynomial for 1
2 � (p ⊕ p)

⇒ Im(x) = 1
2i (x − x̄) is root of the polynomial for 1

2i � (p 	 p)
⇒ compute all these roots

and filter: for all candidates z = Re(x) + Im(x)i , test p(z) = 0

Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 21/22



Complex Algebraic Numbers

Complex Algebraic Numbers in Isabelle

• missing: equivalent of Sturm’s method for C
• take existing Cartesian representation: (Re(x), Im(x))

• only new difficulty: find complex roots, e.g., of p = 1 + x + x3

• basic idea:

• complex roots of rational polynomials come in complex
conjugate pairs

⇒ if x is root of p then x̄ is root of p
⇒ Re(x) = 1

2 (x + x̄) is root of the polynomial for 1
2 � (p ⊕ p)

⇒ Im(x) = 1
2i (x − x̄) is root of the polynomial for 1

2i � (p 	 p)
⇒ compute all these roots

and filter: for all candidates z = Re(x) + Im(x)i , test p(z) = 0

Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 21/22



Complex Algebraic Numbers

Complex Algebraic Numbers in Isabelle

• missing: equivalent of Sturm’s method for C
• take existing Cartesian representation: (Re(x), Im(x))

• only new difficulty: find complex roots, e.g., of p = 1 + x + x3

• basic idea:
• complex roots of rational polynomials come in complex

conjugate pairs
⇒ if x is root of p then x̄ is root of p

⇒ Re(x) = 1
2 (x + x̄) is root of the polynomial for 1

2 � (p ⊕ p)
⇒ Im(x) = 1

2i (x − x̄) is root of the polynomial for 1
2i � (p 	 p)

⇒ compute all these roots

and filter: for all candidates z = Re(x) + Im(x)i , test p(z) = 0

Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 21/22



Complex Algebraic Numbers

Complex Algebraic Numbers in Isabelle

• missing: equivalent of Sturm’s method for C
• take existing Cartesian representation: (Re(x), Im(x))

• only new difficulty: find complex roots, e.g., of p = 1 + x + x3

• basic idea:
• complex roots of rational polynomials come in complex

conjugate pairs
⇒ if x is root of p then x̄ is root of p
⇒ Re(x) = 1

2 (x + x̄) is root of the polynomial for 1
2 � (p ⊕ p)

⇒ Im(x) = 1
2i (x − x̄) is root of the polynomial for 1

2i � (p 	 p)
⇒ compute all these roots

and filter: for all candidates z = Re(x) + Im(x)i , test p(z) = 0

Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 21/22



Complex Algebraic Numbers

Complex Algebraic Numbers in Isabelle

• missing: equivalent of Sturm’s method for C
• take existing Cartesian representation: (Re(x), Im(x))

• only new difficulty: find complex roots, e.g., of p = 1 + x + x3

• basic idea:
• complex roots of rational polynomials come in complex

conjugate pairs
⇒ if x is root of p then x̄ is root of p
⇒ Re(x) = 1

2 (x + x̄) is root of the polynomial for 1
2 � (p ⊕ p)

⇒ Im(x) = 1
2i (x − x̄) is root of the polynomial for 1

2i � (p 	 p)

⇒ compute all these roots

and filter: for all candidates z = Re(x) + Im(x)i , test p(z) = 0

Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 21/22



Complex Algebraic Numbers

Complex Algebraic Numbers in Isabelle

• missing: equivalent of Sturm’s method for C
• take existing Cartesian representation: (Re(x), Im(x))

• only new difficulty: find complex roots, e.g., of p = 1 + x + x3

• basic idea:
• complex roots of rational polynomials come in complex

conjugate pairs
⇒ if x is root of p then x̄ is root of p
⇒ Re(x) = 1

2 (x + x̄) is root of the polynomial for 1
2 � (p ⊕ p)

⇒ Im(x) = 1
2i (x − x̄) is root of the polynomial for 1

2i � (p 	 p)
⇒ compute all these roots

Re(x) =
(
SOME x. 8 − 24x − 88x3 + 96x4 + 288x5 + 384x6 + 768x7 + 512x9 = 0

)
Im(x) =

(
SOME x.

961

4096
x2 −

279

512
x4 +

453

256
x6 −

85

32
x8 +

27

8
x10 − 3x12 + x14 = 0

)

and filter: for all candidates z = Re(x) + Im(x)i , test p(z) = 0

Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 21/22



Complex Algebraic Numbers

Complex Algebraic Numbers in Isabelle

• missing: equivalent of Sturm’s method for C
• take existing Cartesian representation: (Re(x), Im(x))

• only new difficulty: find complex roots, e.g., of p = 1 + x + x3

• basic idea:
• complex roots of rational polynomials come in complex

conjugate pairs
⇒ if x is root of p then x̄ is root of p
⇒ Re(x) = 1

2 (x + x̄) is root of the polynomial for 1
2 � (p ⊕ p)

⇒ Im(x) = 1
2i (x − x̄) is root of the polynomial for 1

2i � (p 	 p)
⇒ compute all these roots

Re(x) =

(
SOME x .

(
−1

8
+

1

4
x + x3

)
·
(
1 + x + x3

)
= 0

)
Im(x) =

(
SOME x .

(
−31

64
+

9

16
x2 − 3

2
x4 + x6

)
· x = 0

)

and filter: for all candidates z = Re(x) + Im(x)i , test p(z) = 0

Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 21/22



Complex Algebraic Numbers

Complex Algebraic Numbers in Isabelle

• missing: equivalent of Sturm’s method for C
• take existing Cartesian representation: (Re(x), Im(x))

• only new difficulty: find complex roots, e.g., of p = 1 + x + x3

• basic idea:
• complex roots of rational polynomials come in complex

conjugate pairs
⇒ if x is root of p then x̄ is root of p
⇒ Re(x) = 1

2 (x + x̄) is root of the polynomial for 1
2 � (p ⊕ p)

⇒ Im(x) = 1
2i (x − x̄) is root of the polynomial for 1

2i � (p 	 p)
⇒ compute all these roots

Re(x) =

(
SOME x .

(
−1

8
+

1

4
x + x3

)
·
(
1 + x + x3

)
= 0

)
Im(x) =

(
SOME x .

(
−31

64
+

9

16
x2 − 3

2
x4 + x6

)
· x = 0

)
and filter: for all candidates z = Re(x) + Im(x)i , test p(z) = 0

Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 21/22



Complex Algebraic Numbers

Summary

• formalization of real and complex algebraic numbers,
implementing R and C
+, −, ×, /, n

√
·, b·c, =, <, i , Re, Im, show

• factorization algorithms for rational polynomials over Q, R, C
• heavily relying on Sturm’s method and matrix library

• based on factorization oracle (S. Joosten @ Isabelle workshop)

• ∼ 20.000 loc, available in archive of formal proofs

Thiemann and Yamada (Univ. Innsbruck) Algebraic Numbers in Isabelle/HOL 22/22


	Motivation
	Real Algebraic Numbers
	Well-Definedness
	Calculating Real Roots of Rational Polynomial
	Factorizing Rational Polynomial
	Arithmetic on Real Algebraic Numbers

	Complex Algebraic Numbers

