Algebraic Numbers in Isabelle/HOL ${ }^{1}$

René Thiemann and Akihisa Yamada

Institute of Computer Science University of Innsbruck

ITP 2016, August 23, 2016
Supported by the Austrian Science Fund (FWF) project Y757

Overview

- Motivation
- Real Algebraic Numbers
- Well-Definedness
- Calculating Real Roots of Rational Polynomial
- Factorizing Rational Polynomial
- Arithmetic on Real Algebraic Numbers
- Complex Algebraic Numbers

Certify Complexity of Matrix Interpretations

- given: automatically generated complexity proof for program

$$
\chi_{A}=(x-1) \cdot\left(-39+360 x-832 x^{2}+512 x^{3}\right)
$$

- criterions
- polynomial complexity if norms of all complex roots of $\chi_{A} \leqslant 1$
- degree d in $\mathcal{O}\left(n^{d}\right)$: more calculations with complex roots of χ_{A}

Certify Complexity of Matrix Interpretations

- given: automatically generated complexity proof for program

$$
\chi_{A}=(x-1) \cdot\left(-39+360 x-832 x^{2}+512 x^{3}\right)
$$

- criterions
- polynomial complexity if norms of all complex roots of $\chi_{A} \leqslant 1$
- degree d in $\mathcal{O}\left(n^{d}\right)$: more calculations with complex roots of χ_{A}
- problem: certifier crashed as numbers got too complicated

Closed Form for Cubic Polynomials

$$
\begin{aligned}
&-39+360 x-832 x^{2}+512 x^{3}=0 \text { iff } \\
& \bullet x \\
&=\frac{1}{24}\left(13+\frac{34}{\sqrt[3]{91+9 i \sqrt{383}}}+\sqrt[3]{91+9 i \sqrt{383}}\right), \\
& \bullet\left.x=\frac{13}{24}-\frac{17(1+i \sqrt{3})}{24 \sqrt[3]{91+9 i \sqrt{383}}}-\frac{1}{48}(1-i \sqrt{3})\right) \sqrt[3]{91+9 i \sqrt{383}}, \text { or } \\
& \text { • } x\left.=\frac{13}{24}-\frac{17(1-i \sqrt{3})}{24 \sqrt[3]{91+9 i \sqrt{383}}}-\frac{1}{48}(1+i \sqrt{3})\right) \sqrt[3]{91+9 i \sqrt{383}}
\end{aligned}
$$

Closed Form for Cubic Polynomials

- $-39+360 x-832 x^{2}+512 x^{3}=0$ iff

$$
\begin{aligned}
& \text { - } x_{1}=\frac{1}{24}\left(13+\frac{34}{\sqrt[3]{91+9 i \sqrt{383}}}+\sqrt[3]{91+9 i \sqrt{383}}\right) \\
& \text { - } \left.x_{2}=\frac{13}{24}-\frac{17(1+i \sqrt{3})}{24 \sqrt[3]{91+9 i \sqrt{383}}}-\frac{1}{48}(1-i \sqrt{3})\right) \sqrt[3]{91+9 i \sqrt{383}}, \text { or } \\
& \text { - } \left.x_{3}=\frac{13}{24}-\frac{17(1-i \sqrt{3})}{24 \sqrt[3]{91+9 i \sqrt{383}}}-\frac{1}{48}(1+i \sqrt{3})\right) \sqrt[3]{91+9 i \sqrt{383}}
\end{aligned}
$$

- problem: calculate and decide

$$
\operatorname{norm}\left(x_{j}\right)=\sqrt{\operatorname{Re}\left(x_{j}\right)^{2}+\operatorname{Im}\left(x_{j}\right)^{2}} \leqslant 1
$$

for all $j \in\{1,2,3\}$

Closed Form for Cubic Polynomials

- $-39+360 x-832 x^{2}+512 x^{3}=0$ iff

$$
\begin{aligned}
& \text { - } x_{1}=\frac{1}{24}\left(13+\frac{34}{\sqrt[3]{91+9 i \sqrt{383}}}+\sqrt[3]{91+9 i \sqrt{383}}\right) \\
& \text { - } \left.x_{2}=\frac{13}{24}-\frac{17(1+i \sqrt{3})}{24 \sqrt[3]{91+9 i \sqrt{383}}}-\frac{1}{48}(1-i \sqrt{3})\right) \sqrt[3]{91+9 i \sqrt{383}}, \text { or } \\
& \text { - } \left.x_{3}=\frac{13}{24}-\frac{17(1-i \sqrt{3})}{24 \sqrt[3]{91+9 i \sqrt{383}}}-\frac{1}{48}(1+i \sqrt{3})\right) \sqrt[3]{91+9 i \sqrt{383}}
\end{aligned}
$$

- problem: calculate and decide

$$
\operatorname{norm}\left(x_{j}\right)=\sqrt{\operatorname{Re}\left(x_{j}\right)^{2}+\operatorname{Im}\left(x_{j}\right)^{2}} \leqslant 1
$$

for all $j \in\{1,2,3\}$

- problem: no closed form for roots of polynomials of degree 5 and higher

Algebraic Numbers

- number $x \in \mathbb{R} \cup \mathbb{C}$ is algebraic iff it is root of non-zero rational polynomial
- $x_{1}=$ "root \#1 of $-39+360 x-832 x^{2}+512 x^{3}$ "
- $x_{2}=$ "root \#2 of $-39+360 x-832 x^{2}+512 x^{3}$ "
- $x_{3}=$ "root \#3 of $-39+360 x-832 x^{2}+512 x^{3}$ "

Figure: $-39+360 x-832 x^{2}+512 x^{3}$

Problems with Algebraic Numbers

- well-definedness
is there a "root \#3 of $-23+x-5 x^{2}+x^{3 "}$

Problems with Algebraic Numbers

- well-definedness
is there a "root \#3 of $-23+x-5 x^{2}+x^{3 "}$
- representation
is there a simpler representation of "root \#3 of

$$
-108-72 x+108 x^{2}+84 x^{3}-27 x^{4}-32 x^{5}-2 x^{6}+4 x^{7}+x^{8}
$$

Problems with Algebraic Numbers

- well-definedness
is there a "root \#3 of $-23+x-5 x^{2}+x^{3 "}$
- representation
is there a simpler representation of "root \#3 of
$-108-72 x+108 x^{2}+84 x^{3}-27 x^{4}-32 x^{5}-2 x^{6}+4 x^{7}+x^{8 \prime}$
- comparisons is "root $\# 3$ of $-39+360 x-832 x^{2}+512 x^{3 "}$ smaller than 1

Problems with Algebraic Numbers

- well-definedness
is there a "root \#3 of $-23+x-5 x^{2}+x^{3}$ "
- representation
is there a simpler representation of "root \#3 of
$-108-72 x+108 x^{2}+84 x^{3}-27 x^{4}-32 x^{5}-2 x^{6}+4 x^{7}+x^{8 \prime}$
- comparisons is "root \#3 of $-39+360 x-832 x^{2}+512 x^{3}$ " smaller than 1
- arithmetic
calculate a polynomial representing

$$
\text { "root \#2 of }-2+x^{2} "+\text { "root } \# 1 \text { of }-3+x^{2 "}
$$

Problems with Algebraic Numbers

- well-definedness
is there a "root \#3 of $-23+x-5 x^{2}+x^{3 "}$
- representation factorization of rational polynomials
is there a simpler representation of "root \#3 of $-108-72 x+108 x^{2}+84 x^{3}-27 x^{4}-32 x^{5}-2 x^{6}+4 x^{7}+x^{8 "}$
- comparisons Sturm's method is "root $\# 3$ of $-39+360 x-832 x^{2}+512 x^{3 "}$ smaller than 1
- arithmetic matrices, determinants, resultants, ...
calculate a polynomial representing

$$
\text { "root \#2 of }-2+x^{2 "}+\text { "root \#1 of }-3+x^{2 "}
$$

Main Result: Formalization of Algebraic Numbers

- common properties on algebraic numbers (\mathbb{R} and \mathbb{C})
- executable real algebraic numbers
- executable complex algebraic numbers indirectly
- easy to use via data-refinement for \mathbb{R} and \mathbb{C}

$$
\lfloor\operatorname{norm}(\sqrt{\sqrt[3]{2}+3+2 i}) \cdot 100\rfloor \stackrel{\text { evaluate }}{\hookrightarrow} 216
$$

- applicable inside (eval) and outside Isabelle (export-code)

Related work

- Cyril Cohen (ITP 2012)
- Coq
- similar, but partly based on different paper proofs
- our work: more focus on efficient execution

Related work

- Cyril Cohen (ITP 2012)
- Coq
- similar, but partly based on different paper proofs
- our work: more focus on efficient execution
- Wenda Li and Larry Paulson (CPP 2016)
- independant Isabelle/HOL formalization, different approach
- oracle (MetiTarski) performs computations
- certified code validates results

Related work

- Cyril Cohen (ITP 2012)
- Coq
- similar, but partly based on different paper proofs
- our work: more focus on efficient execution
- Wenda Li and Larry Paulson (CPP 2016)
- independant Isabelle/HOL formalization, different approach
- oracle (MetiTarski) performs computations
- certified code validates results
- experimental comparison (examples of Li and Paulson)

MetiTarski	1.83 seconds	(@ 2.66 Ghz)
+ validation of Li and Paulson	4.16 seconds	(@ 2.66 Ghz)
Our generated Haskell code	0.03 seconds	(@ 3.5 Ghz)

Well-Definedness

- "root \#3 of $-23+x-5 x^{2}+x^{3 "}$

- "root $\# 3$ of $-25+155 x-304 x^{2}+192 x^{3 "}$

Sturm's Method

- input
- polynomial over \mathbb{R}
- interval ($[2,5],(-\pi, 7],(-\infty, 3)$, or $(-\infty,+\infty))$
- output: count-roots p itval
- number of distinct real roots of p in interval itval

Sturm's Method

- input
- polynomial over \mathbb{R}
- interval $([2,5],(-\pi, 7],(-\infty, 3)$, or $(-\infty,+\infty))$
- output: count-roots p itval
- number of distinct real roots of p in interval itval
- formalized in Isabelle by Manuel Eberl
- nearly used as black-box

Sturm's Method

- input
- polynomial over \mathbb{R}
- interval $([2,5],(-\pi, 7],(-\infty, 3)$, or $(-\infty,+\infty))$
- output: count-roots p itval
- number of distinct real roots of p in interval itval
- formalized in Isabelle by Manuel Eberl
- nearly used as black-box
- adapted functions to work over \mathbb{Q} number of distinct real roots of polynomial over \mathbb{Q} in interval over \mathbb{Q}
reason: apply Sturm's method to implement \mathbb{R} formalization: locale for homomorphisms

Sturm's Method

- input
- polynomial over \mathbb{R}
- interval $([2,5],(-\pi, 7],(-\infty, 3)$, or $(-\infty,+\infty))$
- output: count-roots p itval
- number of distinct real roots of p in interval itval
- formalized in Isabelle by Manuel Eberl
- nearly used as black-box
- adapted functions to work over \mathbb{Q} number of distinct real roots of polynomial over \mathbb{Q} in interval over \mathbb{Q}
reason: apply Sturm's method to implement \mathbb{R} formalization: locale for homomorphisms
- precompute first phase of Sturm's method
\Rightarrow query many intervals for same polynomial more efficiently

Applying Sturm's Method for Well-Definedness

$$
\text { "root } \# 3 \text { of }-25+155 x-304 x^{2}+192 x^{3 "}
$$

count-roots $\left(-25+155 x-304 x^{2}+192 x^{3}\right)(-\infty,+\infty)=2$

Representation of Real Algebraic Numbers - Part 1

- quadruple
- polynomial over $\mathbb{Q}: p$
- left and right interval bound $\in \mathbb{Q}: /$ and r
- precomputation of Sturm for p : root-info
- (flag for factorization information on p)

Representation of Real Algebraic Numbers - Part 1

- quadruple
- polynomial over $\mathbb{Q}: p$
- left and right interval bound $\in \mathbb{Q}$: I and r
- precomputation of Sturm for p : root-info
- (flag for factorization information on p)
- representing real number

$$
\text { THE } x \in[I, r] . \text { rpoly } p x=0
$$

Representation of Real Algebraic Numbers - Part 1

- quadruple
- polynomial over $\mathbb{Q}: p$
- left and right interval bound $\in \mathbb{Q}$: $/$ and r
- precomputation of Sturm for p : root-info
- (flag for factorization information on p)
- representing real number

$$
\text { THE } x \in[I, r] . \text { rpoly } p x=0
$$

- five invariants
- $p \neq 0$
- root-info $=$ count-roots p
- root-info $[I, r]=1$
- ...

Representation of Real Algebraic Numbers - Part 1

- quadruple
- polynomial over $\mathbb{Q}: p$
- left and right interval bound $\in \mathbb{Q}$: I and r
- precomputation of Sturm for p : root-info
- (flag for factorization information on p)
- representing real number

$$
\text { THE } x \in[I, r] . \text { rpoly } p x=0
$$

- five invariants
- $p \neq 0$
- root-info $=$ count-roots p
- root-info $[I, r]=1$
- ...
- invariants are ensured via a subtype (typedef)
- new type of quadruples satisfying invariants
- lift-definition and transfer for function definitions and proofs

Real Roots of Rational Polynomial

> input: non-zero polynomial over \mathbb{Q}
> output: list of real algebraic numbers representing the roots

Real Roots of Rational Polynomial

input: non-zero polynomial over \mathbb{Q}
output: list of real algebraic numbers representing the roots

1. factorize input polynomial over \mathbb{Q} into $p_{1}^{m_{1}} \cdot \ldots \cdot p_{n}^{m_{n}}$

Real Roots of Rational Polynomial

input: non-zero polynomial over \mathbb{Q}
output: list of real algebraic numbers representing the roots

1. factorize input polynomial over \mathbb{Q} into $p_{1}^{m_{1}} \cdot \ldots \cdot p_{n}^{m_{n}}$
2. apply the following steps on each p_{i}

Real Roots of Rational Polynomial

input: non-zero polynomial over \mathbb{Q}
output: list of real algebraic numbers representing the roots

1. factorize input polynomial over \mathbb{Q} into $p_{1}^{m_{1}} \cdot \ldots \cdot p_{n}^{m_{n}}$
2. apply the following steps on each p_{i}
3. determine root-info; for p_{i} and initial bounds l_{i}, r_{i} such that

$$
\text { root-info }_{i}(-\infty,+\infty)=\text { root-info }_{i}\left[l_{i}, r_{i}\right]
$$

Real Roots of Rational Polynomial

input: non-zero polynomial over \mathbb{Q}
output: list of real algebraic numbers representing the roots

1. factorize input polynomial over \mathbb{Q} into $p_{1}^{m_{1}} \cdot \ldots \cdot p_{n}^{m_{n}}$
2. apply the following steps on each p_{i}
3. determine root-info for p_{i} and initial bounds l_{i}, r_{i} such that

$$
\text { root-info }_{i}(-\infty,+\infty)=\text { root-info }_{i}\left[/_{i}, r_{i}\right]
$$

4. perform bisection on $\left[/_{i}, r_{i}\right]$ to obtain intervals which all contain a single root of p_{i}

Example

- input: χ_{A}
- computation:
- $39-399 x+1192 x^{2}-1344 x^{3}+512 x^{4}$
- output:

Example

- factorization
- computation:
- $(x-1) \cdot\left(-39+360 x-832 x^{2}+512 x^{3}\right)$
- output:

Example

- factorization
- computation:
- $(x-1) \cdot\left(-39+360 x-832 x^{2}+512 x^{3}\right)$
- output: $(x-1,[1,1])$

Example

- initial bounds: $6=$ degree $p_{i} \cdot \max \left\{\left\lceil\left|c_{i}\right|\right\rceil \cdot c_{i}\right.$ coefficient of $\left.p_{i}\right\}$
- computation:
- $(x-1) \cdot\left(-39+360 x-832 x^{2}+512 x^{3}\right)$
- todo $=\{[-6,6]\}$

- output: $(x-1,[1,1])$

Example

- bisection
- computation:
- $(x-1) \cdot\left(-39+360 x-832 x^{2}+512 x^{3}\right)$
- todo $=\{[-6,0],[0,6]\}$

- output: $(x-1,[1,1])$

Example

- bisection
- computation:
- $(x-1) \cdot\left(-39+360 x-832 x^{2}+512 x^{3}\right)$
- todo $=\{[0,6]\}$

- output: $(x-1,[1,1])$

Example

- bisection
- computation:
- $(x-1) \cdot\left(-39+360 x-832 x^{2}+512 x^{3}\right)$
- todo $=\{[0,3],[3,6]\}$

- output: $(x-1,[1,1])$

Example

- bisection
- computation:
- $(x-1) \cdot\left(-39+360 x-832 x^{2}+512 x^{3}\right)$
- todo $=\left\{\left[0, \frac{3}{2}\right],\left[\frac{3}{2}, 3\right],[3,6]\right\}$

- output: $(x-1,[1,1])$

Example

- bisection
- computation:
- $(x-1) \cdot\left(-39+360 x-832 x^{2}+512 x^{3}\right)$
- todo $=\left\{\left[0, \frac{3}{4}\right],\left[\frac{3}{4}, \frac{3}{2}\right],\left[\frac{3}{2}, 3\right],[3,6]\right\}$

- output: $(x-1,[1,1])$

Example

- bisection
- computation:
- $(x-1) \cdot\left(-39+360 x-832 x^{2}+512 x^{3}\right)$
- todo $=\left\{\left[0, \frac{3}{8}\right],\left[\frac{3}{8}, \frac{3}{4}\right],\left[\frac{3}{4}, \frac{3}{2}\right],\left[\frac{3}{2}, 3\right],[3,6]\right\}$

- output: $(x-1,[1,1])$

Example

- bisection
- computation:
- $(x-1) \cdot\left(-39+360 x-832 x^{2}+512 x^{3}\right)$
- todo $=\left\{\left[\frac{3}{8}, \frac{3}{4}\right],\left[\frac{3}{4}, \frac{3}{2}\right],\left[\frac{3}{2}, 3\right],[3,6]\right\}$

- output: $(x-1,[1,1]),\left(p_{i},\left[0, \frac{3}{8}\right]\right)$

Example

- bisection
- computation:
- $(x-1) \cdot\left(-39+360 x-832 x^{2}+512 x^{3}\right)$
- todo $=\left\{\left[\frac{3}{4}, \frac{3}{2}\right],\left[\frac{3}{2}, 3\right],[3,6]\right\}$

- output: $(x-1,[1,1]),\left(p_{i},\left[0, \frac{3}{8}\right]\right),\left(p_{i},\left[\frac{3}{8}, \frac{3}{4}\right]\right)$

Example

- bisection
- computation:
- $(x-1) \cdot\left(-39+360 x-832 x^{2}+512 x^{3}\right)$
- todo $=\left\{\left[\frac{3}{2}, 3\right],[3,6]\right\}$

- output: $(x-1,[1,1]),\left(p_{i},\left[0, \frac{3}{8}\right]\right),\left(p_{i},\left[\frac{3}{8}, \frac{3}{4}\right]\right),\left(p_{i},\left[\frac{3}{4}, \frac{3}{2}\right]\right)$

Example

- bisection
- computation:
- $(x-1) \cdot\left(-39+360 x-832 x^{2}+512 x^{3}\right)$
- todo $=\{[3,6]\}$

- output: $(x-1,[1,1]),\left(p_{i},\left[0, \frac{3}{8}\right]\right),\left(p_{i},\left[\frac{3}{8}, \frac{3}{4}\right]\right),\left(p_{i},\left[\frac{3}{4}, \frac{3}{2}\right]\right)$

Example

- bisection
- computation:
- $(x-1) \cdot\left(-39+360 x-832 x^{2}+512 x^{3}\right)$
- todo $=\{ \}$

- output: $(x-1,[1,1]),\left(p_{i},\left[0, \frac{3}{8}\right]\right),\left(p_{i},\left[\frac{3}{8}, \frac{3}{4}\right]\right),\left(p_{i},\left[\frac{3}{4}, \frac{3}{2}\right]\right)$

Bisection Algorithm

- bisection takes root-info as parameter for efficiency
- does not terminate (e.g., pass $\lambda x .2$)

Bisection Algorithm

- bisection takes root-info as parameter for efficiency
- does not terminate (e.g., pass $\lambda x .2$)
- definition as partial-function to obtain code-equations

Bisection Algorithm

- bisection takes root-info as parameter for efficiency
- does not terminate (e.g., pass $\lambda x .2$)
- definition as partial-function to obtain code-equations
- soundness via well-founded induction; order based on minimal distance between roots of p_{i}

Factorization of Rational Polynomials

- important for efficiency: keep polynomials small

Factorization of Rational Polynomials

- important for efficiency: keep polynomials small
- time/degree of representing polynomials for $\sum_{i=1}^{n} \sqrt{i}$

factorization	$n=8$	$n=9$	$n=10$
none	$2 \mathrm{~m} 11 \mathrm{~s} / 256$	$22 \mathrm{~m} 19 \mathrm{~s} / 512$	$12 \mathrm{~h} 19 \mathrm{~m} / 1024$
square-free	$2 \mathrm{~m} 14 \mathrm{~s} / 256$	$15 \mathrm{~m} 31 \mathrm{~s} / 384$	$9 \mathrm{~h} 31 \mathrm{~m} / 768$
full	$0.35 \mathrm{~s} / 16$	$0.35 \mathrm{~s} / 16$	$0.59 \mathrm{~s} / 16$

Factorization of Rational Polynomials

- important for efficiency: keep polynomials small
- time/degree of representing polynomials for $\sum_{i=1}^{n} \sqrt{i}$

factorization	$n=8$	$n=9$	$n=10$
none	$2 \mathrm{~m} 11 \mathrm{~s} / 256$	$22 \mathrm{~m} 19 \mathrm{~s} / 512$	$12 \mathrm{~h} 19 \mathrm{~m} / 1024$
square-free	$2 \mathrm{~m} 14 \mathrm{~s} / 256$	$15 \mathrm{~m} 31 \mathrm{~s} / 384$	$9 \mathrm{~h} 31 \mathrm{~m} / 768$
full	$0.35 \mathrm{~s} / 16$	$0.35 \mathrm{~s} / 16$	$0.59 \mathrm{~s} / 16$

- algorithm

Factorization of Rational Polynomials

- important for efficiency: keep polynomials small
- time/degree of representing polynomials for $\sum_{i=1}^{n} \sqrt{i}$

factorization	$n=8$	$n=9$	$n=10$
none	$2 \mathrm{~m} 11 \mathrm{~s} / 256$	$22 \mathrm{~m} 19 \mathrm{~s} / 512$	$12 \mathrm{~h} 19 \mathrm{~m} / 1024$
square-free	$2 \mathrm{~m} 14 \mathrm{~s} / 256$	$15 \mathrm{~m} 31 \mathrm{~s} / 384$	$9 \mathrm{~h} 31 \mathrm{~m} / 768$
full	$0.35 \mathrm{~s} / 16$	$0.35 \mathrm{~s} / 16$	$0.59 \mathrm{~s} / 16$

- algorithm
- apply certified square-free factorization

$$
\begin{aligned}
& -108-72 x+108 x^{2}+84 x^{3}-27 x^{4}-32 x^{5}-2 x^{6}+4 x^{7}+x^{8} \\
= & \left(-3+x^{2}\right)^{2} \cdot\left(-12-8 x+4 x^{2}+4 x^{3}+x^{4}\right)^{1}
\end{aligned}
$$

Factorization of Rational Polynomials

- important for efficiency: keep polynomials small
- time/degree of representing polynomials for $\sum_{i=1}^{n} \sqrt{i}$

factorization	$n=8$	$n=9$	$n=10$
none	$2 \mathrm{~m} 11 \mathrm{~s} / 256$	$22 \mathrm{~m} 19 \mathrm{~s} / 512$	$12 \mathrm{~h} 19 \mathrm{~m} / 1024$
square-free	$2 \mathrm{~m} 14 \mathrm{~s} / 256$	$15 \mathrm{~m} 31 \mathrm{~s} / 384$	$9 \mathrm{~h} 31 \mathrm{~m} / 768$
full	$0.35 \mathrm{~s} / 16$	$0.35 \mathrm{~s} / 16$	$0.59 \mathrm{~s} / 16$

- algorithm
- apply certified square-free factorization

$$
\begin{aligned}
& -108-72 x+108 x^{2}+84 x^{3}-27 x^{4}-32 x^{5}-2 x^{6}+4 x^{7}+x^{8} \\
= & \left(-3+x^{2}\right)^{2} \cdot\left(-12-8 x+4 x^{2}+4 x^{3}+x^{4}\right)^{1}
\end{aligned}
$$

- invoke oracle on each factor

$$
-12-8 x+4 x^{2}+4 x^{3}+x^{4} \stackrel{\text { oracle }}{=}\left(-2+x^{2}\right) \cdot\left(6+4 x+x^{2}\right)
$$

Factorization of Rational Polynomials

- important for efficiency: keep polynomials small
- time/degree of representing polynomials for $\sum_{i=1}^{n} \sqrt{i}$

factorization	$n=8$	$n=9$	$n=10$
none	$2 \mathrm{~m} 11 \mathrm{~s} / 256$	$22 \mathrm{~m} 19 \mathrm{~s} / 512$	$12 \mathrm{~h} 19 \mathrm{~m} / 1024$
square-free	$2 \mathrm{~m} 14 \mathrm{~s} / 256$	$15 \mathrm{~m} 31 \mathrm{~s} / 384$	$9 \mathrm{~h} 31 \mathrm{~m} / 768$
full	$0.35 \mathrm{~s} / 16$	$0.35 \mathrm{~s} / 16$	$0.59 \mathrm{~s} / 16$

- algorithm
- apply certified square-free factorization

$$
\begin{aligned}
& -108-72 x+108 x^{2}+84 x^{3}-27 x^{4}-32 x^{5}-2 x^{6}+4 x^{7}+x^{8} \\
= & \left(-3+x^{2}\right)^{2} \cdot\left(-12-8 x+4 x^{2}+4 x^{3}+x^{4}\right)^{1}
\end{aligned}
$$

- invoke oracle on each factor

$$
-12-8 x+4 x^{2}+4 x^{3}+x^{4} \stackrel{\text { oracle }}{=}\left(-2+x^{2}\right) \cdot\left(6+4 x+x^{2}\right)
$$

- check equality at runtime, not irreducibility

Simplification of Representation

Consider

$$
p(x)=-108-72 x+108 x^{2}+84 x^{3}-27 x^{4}-32 x^{5}-2 x^{6}+4 x^{7}+x^{8}
$$

THE root of p in $[1,1.5]$
$=$ THE root of $\left(-3+x^{2}\right) \cdot\left(6+4 x+x^{2}\right) \cdot\left(-2+x^{2}\right)$ in $[1,1.5]$
$=$ THE root of $-2+x^{2}$ in $[1,1.5]$
$(=\sqrt{2})$

Comparison of Real Algebraic Numbers

1. decide whether $(p,[I, r])$ and $\left(q,\left[I^{\prime}, r^{\prime}\right]\right)$ encode same number

THE root of p in $[I, r]=$ THE root of q in $\left[I^{\prime}, r^{\prime}\right]$ $\Longleftrightarrow g c d p q$ has real root in $[I, r] \cap\left[I^{\prime}, r^{\prime}\right]$
2. if not, tighten bounds of both numbers via bisection until intervals are disjoint
(bisection algorithm again defined by partial-function)

Arithmetic on Real Algebraic Numbers

how to perform operations like,,$+- \times, /, \sqrt[n]{-}$, etc. on algebraic numbers $(p,[I, r])$ and $\left(q,\left[I^{\prime}, r^{\prime}\right]\right)$?

Arithmetic on Real Algebraic Numbers

how to perform operations like,,$+- \times, /, \sqrt[n]{ }$, etc. on algebraic numbers $(p,[I, r])$ and $\left(q,\left[I^{\prime}, r^{\prime}\right]\right)$?

1. determine polynomial

- negation: $p(-x)$
- $\sqrt[n]{\bullet}: p\left(x^{n}\right)$
- addition: $\operatorname{resultant}(p(x-y), q(y))$

Arithmetic on Real Algebraic Numbers

how to perform operations like,,$+- \times, /, \sqrt[n]{-}$, etc. on algebraic numbers $(p,[I, r])$ and $\left(q,\left[I^{\prime}, r^{\prime}\right]\right)$?

1. determine polynomial

- negation: $p(-x)$
- $\sqrt[n]{\because}: p\left(x^{n}\right)$
- addition: resultant $(p(x-y), q(y))$

2. compute initial interval, e.g. $\left[I+I^{\prime}, r+r^{\prime}\right]$ for addition

Arithmetic on Real Algebraic Numbers

how to perform operations like,,$+- \times, /, \sqrt[n]{-}$, etc. on algebraic numbers $(p,[I, r])$ and $\left(q,\left[I^{\prime}, r^{\prime}\right]\right)$?

1. determine polynomial

- negation: $p(-x)$
- $\sqrt[n]{\cdot}: p\left(x^{n}\right)$
- addition: resultant $(p(x-y), q(y))$

2. compute initial interval, e.g. $\left[I+I^{\prime}, r+r^{\prime}\right]$ for addition
3. tighten intervals $[I, r]$ and $\left[I^{\prime}, r^{\prime}\right]$ until resulting interval contains unique root

Arithmetic on Real Algebraic Numbers

how to perform operations like,,$+- \times, /, \sqrt[n]{ }$, etc. on algebraic numbers $(p,[I, r])$ and $\left(q,\left[I^{\prime}, r^{\prime}\right]\right)$?

1. determine polynomial

- negation: $p(-x)$
- $\sqrt[n]{\cdot}: p\left(x^{n}\right)$
- addition: resultant $(p(x-y), q(y))$

2. compute initial interval, e.g. $\left[I+I^{\prime}, r+r^{\prime}\right]$ for addition
3. tighten intervals $[I, r]$ and $\left[I^{\prime}, r^{\prime}\right]$ until resulting interval contains unique root
4. optimize representation

Increase Efficiency, Representation - Part 2

- factorizations in between to simplify representations
- efficient (not optimal) computation of resultants and GCDs
- tuned algorithms on polynomials
- special treatment for rational numbers

Increase Efficiency, Representation - Part 2

- factorizations in between to simplify representations
- efficient (not optimal) computation of resultants and GCDs
- tuned algorithms on polynomials
- special treatment for rational numbers

```
datatype real_alg_3 =
    Rational rat
    | Irrational "quadruple with invariants"
```

typedef real_alg_4 = "real_alg_3 with invariant"
definition real_of_4 :: real_alg_4 => real
quotient_type real_alg =
real_alg_4 / "\% x y. real_of_4 x = real_of_4 y"

Complex Algebraic Numbers in Isabelle

- missing: equivalent of Sturm's method for \mathbb{C}

Complex Algebraic Numbers in Isabelle

- missing: equivalent of Sturm's method for \mathbb{C}
- take existing Cartesian representation: $(\operatorname{Re}(x), \operatorname{Im}(x))$

Complex Algebraic Numbers in Isabelle

- missing: equivalent of Sturm's method for \mathbb{C}
- take existing Cartesian representation: $(\operatorname{Re}(x), \operatorname{Im}(x))$
- only new difficulty: find complex roots, e.g., of $p=1+x+x^{3}$

Complex Algebraic Numbers in Isabelle

- missing: equivalent of Sturm's method for \mathbb{C}
- take existing Cartesian representation: $(\operatorname{Re}(x), \operatorname{Im}(x))$
- only new difficulty: find complex roots, e.g., of $p=1+x+x^{3}$
- basic idea:
- complex roots of rational polynomials come in complex conjugate pairs
\Rightarrow if x is root of p then \bar{x} is root of p

Complex Algebraic Numbers in Isabelle

- missing: equivalent of Sturm's method for \mathbb{C}
- take existing Cartesian representation: $(\operatorname{Re}(x), \operatorname{Im}(x))$
- only new difficulty: find complex roots, e.g., of $p=1+x+x^{3}$
- basic idea:
- complex roots of rational polynomials come in complex conjugate pairs
\Rightarrow if x is root of p then \bar{x} is root of p
$\Rightarrow \operatorname{Re}(x)=\frac{1}{2}(x+\bar{x})$ is root of the polynomial for $\frac{1}{2} \odot(p \oplus p)$

Complex Algebraic Numbers in Isabelle

- missing: equivalent of Sturm's method for \mathbb{C}
- take existing Cartesian representation: $(\operatorname{Re}(x), \operatorname{Im}(x))$
- only new difficulty: find complex roots, e.g., of $p=1+x+x^{3}$
- basic idea:
- complex roots of rational polynomials come in complex conjugate pairs
\Rightarrow if x is root of p then \bar{x} is root of p
$\Rightarrow \operatorname{Re}(x)=\frac{1}{2}(x+\bar{x})$ is root of the polynomial for $\frac{1}{2} \odot(p \oplus p)$
$\Rightarrow \operatorname{Im}(x)=\frac{1}{2 i}(x-\bar{x})$ is root of the polynomial for $\frac{1}{2 i} \odot(p \ominus p)$

Complex Algebraic Numbers in Isabelle

- missing: equivalent of Sturm's method for \mathbb{C}
- take existing Cartesian representation: $(\operatorname{Re}(x), \operatorname{Im}(x))$
- only new difficulty: find complex roots, e.g., of $p=1+x+x^{3}$
- basic idea:
- complex roots of rational polynomials come in complex conjugate pairs
\Rightarrow if x is root of p then \bar{x} is root of p
$\Rightarrow \operatorname{Re}(x)=\frac{1}{2}(x+\bar{x})$ is root of the polynomial for $\frac{1}{2} \odot(p \oplus p)$
$\Rightarrow \operatorname{Im}(x)=\frac{1}{2 i}(x-\bar{x})$ is root of the polynomial for $\frac{1}{2 i} \odot(p \ominus p)$
\Rightarrow compute all these roots

$$
\begin{aligned}
& \operatorname{Re}(x)=\left(\text { SOME } x \cdot 8-24 x-88 x^{3}+96 x^{4}+288 x^{5}+384 x^{6}+768 x^{7}+512 x^{9}=0\right) \\
& \operatorname{Im}(x)=\left(\text { SOME } x \cdot \frac{961}{4096} x^{2}-\frac{279}{512} x^{4}+\frac{453}{256} x^{6}-\frac{85}{32} x^{8}+\frac{27}{8} x^{10}-3 x^{12}+x^{14}=0\right)
\end{aligned}
$$

Complex Algebraic Numbers in Isabelle

- missing: equivalent of Sturm's method for \mathbb{C}
- take existing Cartesian representation: $(\operatorname{Re}(x), \operatorname{Im}(x))$
- only new difficulty: find complex roots, e.g., of $p=1+x+x^{3}$
- basic idea:
- complex roots of rational polynomials come in complex conjugate pairs
\Rightarrow if x is root of p then \bar{x} is root of p
$\Rightarrow \operatorname{Re}(x)=\frac{1}{2}(x+\bar{x})$ is root of the polynomial for $\frac{1}{2} \odot(p \oplus p)$
$\Rightarrow \operatorname{Im}(x)=\frac{1}{2 i}(x-\bar{x})$ is root of the polynomial for $\frac{1}{2 i} \odot(p \ominus p)$
\Rightarrow compute all these roots

$$
\begin{aligned}
& \operatorname{Re}(x)=\left(\text { SOME } x \cdot\left(-\frac{1}{8}+\frac{1}{4} x+x^{3}\right) \cdot\left(1+x+x^{3}\right)=0\right) \\
& \operatorname{Im}(x)=\left(\text { SOME } x \cdot\left(-\frac{31}{64}+\frac{9}{16} x^{2}-\frac{3}{2} x^{4}+x^{6}\right) \cdot x=0\right)
\end{aligned}
$$

Complex Algebraic Numbers in Isabelle

- missing: equivalent of Sturm's method for \mathbb{C}
- take existing Cartesian representation: $(\operatorname{Re}(x), \operatorname{Im}(x))$
- only new difficulty: find complex roots, e.g., of $p=1+x+x^{3}$
- basic idea:
- complex roots of rational polynomials come in complex conjugate pairs
\Rightarrow if x is root of p then \bar{x} is root of p
$\Rightarrow \operatorname{Re}(x)=\frac{1}{2}(x+\bar{x})$ is root of the polynomial for $\frac{1}{2} \odot(p \oplus p)$
$\Rightarrow \operatorname{Im}(x)=\frac{1}{2 i}(x-\bar{x})$ is root of the polynomial for $\frac{1}{2 i} \odot(p \ominus p)$
\Rightarrow compute all these roots

$$
\begin{aligned}
& \operatorname{Re}(x)=\left(\text { SOME } x \cdot\left(-\frac{1}{8}+\frac{1}{4} x+x^{3}\right) \cdot\left(1+x+x^{3}\right)=0\right) \\
& \operatorname{Im}(x)=\left(\text { SOME } x \cdot\left(-\frac{31}{64}+\frac{9}{16} x^{2}-\frac{3}{2} x^{4}+x^{6}\right) \cdot x=0\right)
\end{aligned}
$$

and filter: for all candidates $z=\operatorname{Re}(x)+\operatorname{Im}(x) i$, test $p(z)=0$

Summary

- formalization of real and complex algebraic numbers, implementing \mathbb{R} and \mathbb{C}
$+,-, \times, /, \sqrt[n]{\cdot},\lfloor\cdot\rfloor,=,<, i, R e, I m$, show
- factorization algorithms for rational polynomials over $\mathbb{Q}, \mathbb{R}, \mathbb{C}$
- heavily relying on Sturm's method and matrix library
- based on factorization oracle (S. Joosten @ Isabelle workshop)
- ~ 20.000 loc, available in archive of formal proofs

