

Algebraic Numbers in Isabelle/HOL¹

René Thiemann and Akihisa Yamada

Overview

Motivation

• Real Algebraic Numbers

- Well-Definedness
- Calculating Real Roots of Rational Polynomial
- Factorizing Rational Polynomial
- Arithmetic on Real Algebraic Numbers

• Complex Algebraic Numbers

Certify Complexity of Matrix Interpretations

• given: automatically generated complexity proof for program

 $\chi_A = (x - 1) \cdot (-39 + 360x - 832x^2 + 512x^3)$

- criterions
 - polynomial complexity if norms of all complex roots of $\chi_A\leqslant 1$
 - degree d in $\mathcal{O}(n^d)$: more calculations with complex roots of χ_A

Certify Complexity of Matrix Interpretations

• given: automatically generated complexity proof for program

 $\chi_A = (x - 1) \cdot (-39 + 360x - 832x^2 + 512x^3)$

- criterions
 - polynomial complexity if norms of all complex roots of $\chi_A\leqslant 1$
 - degree d in $\mathcal{O}(n^d)$: more calculations with complex roots of χ_A
- problem: certifier crashed as numbers got too complicated

Closed Form for Cubic Polynomials

•
$$-39 + 360x - 832x^2 + 512x^3 = 0$$
 iff
• $x = \frac{1}{24} \left(13 + \frac{34}{\sqrt[3]{91+9i\sqrt{383}}} + \sqrt[3]{91+9i\sqrt{383}} \right),$
• $x = \frac{13}{24} - \frac{17(1+i\sqrt{3})}{24\sqrt[3]{91+9i\sqrt{383}}} - \frac{1}{48} (1-i\sqrt{3}) \sqrt[3]{91+9i\sqrt{383}},$ or
• $x = \frac{13}{24} - \frac{17(1-i\sqrt{3})}{24\sqrt[3]{91+9i\sqrt{383}}} - \frac{1}{48} (1+i\sqrt{3}) \sqrt[3]{91+9i\sqrt{383}}$

Closed Form for Cubic Polynomials

•
$$-39 + 360x - 832x^2 + 512x^3 = 0$$
 iff
• $x_1 = \frac{1}{24} \left(13 + \frac{34}{\sqrt[3]{91+9i\sqrt{383}}} + \sqrt[3]{91+9i\sqrt{383}} \right),$
• $x_2 = \frac{13}{24} - \frac{17(1+i\sqrt{3})}{24\sqrt[3]{91+9i\sqrt{383}}} - \frac{1}{48} (1-i\sqrt{3}) \sqrt[3]{91+9i\sqrt{383}},$ or
• $x_3 = \frac{13}{24} - \frac{17(1-i\sqrt{3})}{24\sqrt[3]{91+9i\sqrt{383}}} - \frac{1}{48} (1+i\sqrt{3}) \sqrt[3]{91+9i\sqrt{383}}$

• problem: calculate and decide

$$norm(x_j) = \sqrt{Re(x_j)^2 + Im(x_j)^2} \leqslant 1$$

for all $j \in \{1, 2, 3\}$

(

Closed Form for Cubic Polynomials

•
$$-39 + 360x - 832x^2 + 512x^3 = 0$$
 iff
• $x_1 = \frac{1}{24} \left(13 + \frac{34}{\sqrt[3]{91+9i\sqrt{383}}} + \sqrt[3]{91+9i\sqrt{383}} \right),$
• $x_2 = \frac{13}{24} - \frac{17(1+i\sqrt{3})}{24\sqrt[3]{91+9i\sqrt{383}}} - \frac{1}{48} \left(1 - i\sqrt{3} \right) \sqrt[3]{91+9i\sqrt{383}},$ or
• $x_3 = \frac{13}{24} - \frac{17(1-i\sqrt{3})}{24\sqrt[3]{91+9i\sqrt{383}}} - \frac{1}{48} \left(1 + i\sqrt{3} \right) \sqrt[3]{91+9i\sqrt{383}}$

• problem: calculate and decide

$$norm(x_j) = \sqrt{Re(x_j)^2 + Im(x_j)^2} \leq 1$$

for all $j \in \{1, 2, 3\}$

• problem: no closed form for roots of polynomials of degree 5 and higher

Algebraic Numbers

• number $x \in \mathbb{R} \cup \mathbb{C}$ is algebraic iff it is root of non-zero rational polynomial

•
$$x_1 =$$
 "root #1 of $-39 + 360x - 832x^2 + 512x^3$ "

•
$$x_2 =$$
 "root #2 of $-39 + 360x - 832x^2 + 512x^3$ "

• $x_3 =$ "root #3 of $-39 + 360x - 832x^2 + 512x^3$ "

Figure: $-39 + 360x - 832x^2 + 512x^3$

• well-definedness

is there a "root #3 of $-23 + x - 5x^2 + x^3$ "

well-definedness

is there a "root #3 of $-23 + x - 5x^2 + x^3$ "

representation

is there a simpler representation of "root #3 of $-108 - 72x + 108x^2 + 84x^3 - 27x^4 - 32x^5 - 2x^6 + 4x^7 + x^8$ "

well-definedness

is there a "root #3 of $-23 + x - 5x^2 + x^3$ "

representation

is there a simpler representation of "root #3 of $-108 - 72x + 108x^2 + 84x^3 - 27x^4 - 32x^5 - 2x^6 + 4x^7 + x^8$ "

comparisons

is "root #3 of $-39 + 360x - 832x^2 + 512x^3$ " smaller than 1

well-definedness

is there a "root #3 of $-23 + x - 5x^2 + x^3$ "

representation

is there a simpler representation of "root #3 of $-108 - 72x + 108x^2 + 84x^3 - 27x^4 - 32x^5 - 2x^6 + 4x^7 + x^8$ "

comparisons

is "root #3 of $-39 + 360x - 832x^2 + 512x^3$ " smaller than 1

• arithmetic

calculate a polynomial representing "root #2 of $-2 + x^{2"}$ + "root #1 of $-3 + x^{2"}$ "

 well-definedness Sturm's method is there a "root #3 of $-23 + x - 5x^2 + x^{3}$ " factorization of rational polynomials representation is there a simpler representation of "root #3 of $-108 - 72x + 108x^{2} + 84x^{3} - 27x^{4} - 32x^{5} - 2x^{6} + 4x^{7} + x^{8''}$ Sturm's method comparisons is "root #3 of $-39 + 360x - 832x^2 + 512x^3$ " smaller than 1 arithmetic matrices, determinants, resultants, calculate a polynomial representing "root #2 of $-2 + x^{2}$ " + "root #1 of $-3 + x^{2}$ "

Main Result: Formalization of Algebraic Numbers

- common properties on algebraic numbers (\mathbb{R} and \mathbb{C})
- executable real algebraic numbers
- executable complex algebraic numbers indirectly
- easy to use via data-refinement for ${\mathbb R}$ and ${\mathbb C}$

 $\lfloor norm(\sqrt[3]{2}+3+2i) \cdot 100 \rfloor \stackrel{evaluate}{\hookrightarrow} 216$

• applicable inside (eval) and outside Isabelle (export-code)

Related work

- Cyril Cohen (ITP 2012)
 - Coq
 - similar, but partly based on different paper proofs
 - our work: more focus on efficient execution

Related work

- Cyril Cohen (ITP 2012)
 - Coq
 - similar, but partly based on different paper proofs
 - our work: more focus on efficient execution
- Wenda Li and Larry Paulson (CPP 2016)
 - independant Isabelle/HOL formalization, different approach
 - oracle (MetiTarski) performs computations
 - certified code validates results

Related work

- Cyril Cohen (ITP 2012)
 - Coq
 - similar, but partly based on different paper proofs
 - our work: more focus on efficient execution
- Wenda Li and Larry Paulson (CPP 2016)
 - independant Isabelle/HOL formalization, different approach
 - oracle (MetiTarski) performs computations
 - certified code validates results
- experimental comparison (examples of Li and Paulson)

MetiTarski	1.83 seconds	(@ 2.66 Ghz)
+ validation of Li and Paulson	4.16 seconds	(@ 2.66 Ghz)
Our generated Haskell code	0.03 seconds	(@ 3.5 Ghz)

Well-Definedness

- input
 - polynomial over $\mathbb R$
 - interval ($[2,5],\,(-\pi,7],\,(-\infty,3),$ or $(-\infty,+\infty)$)
- output: count-roots p itval
 - number of distinct real roots of p in interval itval

- input
 - polynomial over $\mathbb R$
 - interval ($[2,5],\,(-\pi,7],\,(-\infty,3),$ or $(-\infty,+\infty)$)
- output: count-roots p itval
 - number of distinct real roots of p in interval itval
- formalized in Isabelle by Manuel Eberl
- nearly used as black-box

- input
 - polynomial over $\mathbb R$
 - interval ($[2,5],\,(-\pi,7],\,(-\infty,3),$ or $(-\infty,+\infty)$)
- output: count-roots p itval
 - number of distinct real roots of p in interval itval
- formalized in Isabelle by Manuel Eberl
- nearly used as black-box
 - adapted functions to work over \mathbb{Q}

number of distinct real roots of polynomial over $\mathbb Q$ in interval over $\mathbb Q$

reason: apply Sturm's method to implement $\mathbb R$ formalization: locale for homomorphisms

- input
 - polynomial over $\mathbb R$
 - interval ($[2,5],\,(-\pi,7],\,(-\infty,3),$ or $(-\infty,+\infty)$)
- output: count-roots p itval
 - number of distinct real roots of p in interval itval
- formalized in Isabelle by Manuel Eberl
- nearly used as black-box
 - adapted functions to work over \mathbb{Q}

number of distinct real roots of polynomial over $\mathbb Q$ in interval over $\mathbb Q$

reason: apply Sturm's method to implement $\mathbb R$ formalization: locale for homomorphisms

- precompute first phase of Sturm's method
- \Rightarrow query many intervals for same polynomial more efficiently

Applying Sturm's Method for Well-Definedness

count-roots $(-25 + 155x - 304x^2 + 192x^3)$ $(-\infty, +\infty) = 2$

Representation of Real Algebraic Numbers – Part 1

- quadruple
 - polynomial over Q: p
 - left and right interval bound $\in \mathbb{Q}$: *I* and *r*
 - precomputation of Sturm for p: root-info
 - (flag for factorization information on p)

Representation of Real Algebraic Numbers – Part 1

- quadruple
 - polynomial over Q: p
 - left and right interval bound $\in \mathbb{Q}$: *I* and *r*
 - precomputation of Sturm for p: root-info
 - (flag for factorization information on p)
- representing real number

THE $x \in [I, r]$. rpoly $p \ x = 0$

Representation of Real Algebraic Numbers - Part 1

- quadruple
 - polynomial over Q: p
 - left and right interval bound $\in \mathbb{Q}$: *I* and *r*
 - precomputation of Sturm for p: root-info
 - (flag for factorization information on p)
- representing real number

THE $x \in [I, r]$. rpoly p x = 0

- five invariants
 - $p \neq 0$
 - root-info = count-roots p
 - root-info [I, r] = 1
 - . . .

Representation of Real Algebraic Numbers – Part 1

- quadruple
 - polynomial over Q: p
 - left and right interval bound $\in \mathbb{Q}$: *I* and *r*
 - precomputation of Sturm for p: root-info
 - (flag for factorization information on p)
- representing real number

THE $x \in [I, r]$. rpoly p x = 0

- five invariants
 - $p \neq 0$
 - root-info = count-roots p
 - root-info [*I*, *r*] = 1
 - ...
- invariants are ensured via a subtype (typedef)
 - new type of quadruples satisfying invariants
 - lift-definition and transfer for function definitions and proofs

input: non-zero polynomial over \mathbb{Q}

output: list of real algebraic numbers representing the roots

- input: non-zero polynomial over \mathbb{Q}
- output: list of real algebraic numbers representing the roots
- 1. factorize input polynomial over \mathbb{Q} into $p_1^{m_1} \cdot \ldots \cdot p_n^{m_n}$

input: non-zero polynomial over \mathbb{Q}

output: list of real algebraic numbers representing the roots

- 1. factorize input polynomial over \mathbb{Q} into $p_1^{m_1} \cdot \ldots \cdot p_n^{m_n}$
- 2. apply the following steps on each p_i

input: non-zero polynomial over \mathbb{Q}

output: list of real algebraic numbers representing the roots

- 1. factorize input polynomial over \mathbb{Q} into $p_1^{m_1} \cdot \ldots \cdot p_n^{m_n}$
- 2. apply the following steps on each p_i
- 3. determine root-info_i for p_i and initial bounds l_i , r_i such that

 $\operatorname{root-info}_i (-\infty, +\infty) = \operatorname{root-info}_i [I_i, r_i]$

input: non-zero polynomial over \mathbb{Q}

output: list of real algebraic numbers representing the roots

- 1. factorize input polynomial over \mathbb{Q} into $p_1^{m_1} \cdot \ldots \cdot p_n^{m_n}$
- 2. apply the following steps on each p_i
- 3. determine root-info_i for p_i and initial bounds l_i , r_i such that

root-info_i $(-\infty, +\infty)$ = root-info_i $[I_i, r_i]$

perform bisection on [*l_i*, *r_i*] to obtain intervals which all contain a single root of *p_i*

- input: χ_A
- computation:
 - $39 399x + 1192x^2 1344x^3 + 512x^4$

output:

- factorization
- computation:
 - $(x-1) \cdot (-39 + 360x 832x^2 + 512x^3)$

output:

- factorization
- computation:
 - $(x-1) \cdot (-39 + 360x 832x^2 + 512x^3)$

• output:
$$(x - 1, [1, 1])$$

- initial bounds: $6 = degree \ p_i \cdot max\{ [|c_i|], c_i \ coefficient \ of \ p_i \}$
- computation:
 - $(x-1) \cdot (-39 + 360x 832x^2 + 512x^3)$
 - $todo = \{[-6, 6]\}$ $\begin{array}{c} 40 \\ 20 \\ -20$

• output:
$$(x - 1, [1, 1])$$
- bisection
- computation:
 - $(x-1) \cdot (-39 + 360x 832x^2 + 512x^3)$

1.2

• $todo = \{[-6, 0], [0, 6]\}$

• output:
$$(x - 1, [1, 1])$$

- bisection
- computation:
 - $(x-1) \cdot (-39 + 360x 832x^2 + 512x^3)$
 - $todo = \{[0, 6]\}$ $\begin{array}{c} 40 \\ 20 \\ -20$

• output: (x - 1, [1, 1])

- bisection
- computation:
 - $(x-1) \cdot (-39 + 360x 832x^2 + 512x^3)$
 - $todo = \{[0,3], [3,6]\}$ • $todo = \{[0,3], [3,6]\}$ • $todo = \{[0,3], [3,6]\}$ • $todo = \{[0,3], [3,6]\}$

• output: (x - 1, [1, 1])

- bisection
- computation:
 - $(x-1) \cdot (-39 + 360x 832x^2 + 512x^3)$
 - $todo = \{[0, \frac{3}{2}], [\frac{3}{2}, 3], [3, 6]\}$

• output:
$$(x - 1, [1, 1])$$

- bisection
- computation:
 - $(x-1) \cdot (-39 + 360x 832x^2 + 512x^3)$
 - $todo = \{[0, \frac{3}{4}], [\frac{3}{4}, \frac{3}{2}], [\frac{3}{2}, 3], [3, 6]\}$

• output:
$$(x - 1, [1, 1])$$

- bisection
- computation:

• $todo = \{[0, \frac{3}{8}], [\frac{3}{8}, \frac{3}{4}], [\frac{3}{4}, \frac{3}{2}], [\frac{3}{2}, 3], [3, 6]\}$

• output:
$$(x - 1, [1, 1])$$

- bisection
- computation:
 - $(x-1) \cdot (-39 + 360x 832x^2 + 512x^3)$
 - $todo = \{ [\frac{3}{8}, \frac{3}{4}], [\frac{3}{4}, \frac{3}{2}], [\frac{3}{2}, 3], [3, 6] \}$

• output:
$$(x - 1, [1, 1])$$
, $(p_i, [0, \frac{3}{8}])$

- bisection
- computation:
 - $(x-1) \cdot (-39 + 360x 832x^2 + 512x^3)$
 - $todo = \{ [\frac{3}{4}, \frac{3}{2}], [\frac{3}{2}, 3], [3, 6] \}$

• output: (x - 1, [1, 1]), $(p_i, [0, \frac{3}{8}])$, $(p_i, [\frac{3}{8}, \frac{3}{4}])$

- bisection
- computation:
 - $(x-1) \cdot (-39 + 360x 832x^2 + 512x^3)$
 - $todo = \{ [\frac{3}{2}, 3], [3, 6] \}$

• output: (x - 1, [1, 1]), $(p_i, [0, \frac{3}{8}])$, $(p_i, [\frac{3}{8}, \frac{3}{4}])$, $(p_i, [\frac{3}{4}, \frac{3}{2}])$

- bisection
- computation:
 - $(x-1) \cdot (-39 + 360x 832x^2 + 512x^3)$
 - $todo = \{[3, 6]\}$ • $todo = \{[3, 6]\}$

• output: (x - 1, [1, 1]), $(p_i, [0, \frac{3}{8}])$, $(p_i, [\frac{3}{8}, \frac{3}{4}])$, $(p_i, [\frac{3}{4}, \frac{3}{2}])$

- bisection
- computation:

• output: (x - 1, [1, 1]), $(p_i, [0, \frac{3}{8}])$, $(p_i, [\frac{3}{8}, \frac{3}{4}])$, $(p_i, [\frac{3}{4}, \frac{3}{2}])$

Bisection Algorithm

- bisection takes root-info as parameter for efficiency
- does not terminate (e.g., pass $\lambda x.2$)

Bisection Algorithm

- bisection takes root-info as parameter for efficiency
- does not terminate (e.g., pass $\lambda x.2$)
- definition as partial-function to obtain code-equations

Bisection Algorithm

- bisection takes root-info as parameter for efficiency
- does not terminate (e.g., pass $\lambda x.2$)
- definition as partial-function to obtain code-equations
- soundness via well-founded induction;
 order based on minimal distance between roots of p_i

• important for efficiency: keep polynomials small

• important for efficiency: keep polynomials small

time/degree of representing polynomials for $\sum_{i=1} \sqrt{r}$			
factorization	<i>n</i> = 8	<i>n</i> = 9	n = 10
none square-free full	2m11s/256 2m14s/256 0.35s/16	22m19s/512 15m31s/384 0.35s/16	12h19m/1024 9h31m/768 0.59s/16

• time/degree of representing polynomials for $\sum_{i=1}^{n} \sqrt{i}$

• important for efficiency: keep polynomials small

time/degree of representing polynomials for $\sum_{i=1} \sqrt{i}$			
factorization	<i>n</i> = 8	<i>n</i> = 9	n = 10
none	2m11s/256	22m19s/512	12h19m/1024
square-free full	$\frac{2m14s}{250}$ 0.35s/16	0.35s/16	0.59s/16

• time / പ c vonvocanting not $\sum n$ *[*.

algorithm

important for efficiency: keep polynomials small

time/degree of representing polynomials for $\sum_{i=1} \sqrt{i}$			
factorization	<i>n</i> = 8	<i>n</i> = 9	<i>n</i> = 10
none	2m11s/256	22m19s/512	12h19m/1024
square-free	2m14s/256	15m31s/384	9h31m/768
full	0.35s/16	0.35s/16	0.59s/16
	factorization none square-free full	time/degree of representing polyfactorization $n = 8$ none $2m11s/256$ square-free $2m14s/256$ full $0.35s/16$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

• time/degree of representing polynomials for \sum^{n} *[*-

- algorithm
 - apply certified square-free factorization

 $-108 - 72x + 108x^{2} + 84x^{3} - 27x^{4} - 32x^{5} - 2x^{6} + 4x^{7} + x^{8}$ $=(-3+x^2)^2 \cdot (-12-8x+4x^2+4x^3+x^4)^1$

important for efficiency: keep polynomials small

time/degree of representing polynomials for $\sum_{i=1} \sqrt{i}$			
factorization	<i>n</i> = 8	<i>n</i> = 9	<i>n</i> = 10
none square-free full	2m11s/256 2m14s/256 0.35s/16	22m19s/512 15m31s/384 0.35s/16	12h19m/1024 9h31m/768 0.59s/16

• time/degree of representing polynomials for \sum^{n} *[*-

- algorithm
 - apply certified square-free factorization

 $-108 - 72x + 108x^{2} + 84x^{3} - 27x^{4} - 32x^{5} - 2x^{6} + 4x^{7} + x^{8}$ $=(-3+x^2)^2 \cdot (-12-8x+4x^2+4x^3+x^4)^1$

invoke oracle on each factor

$$-12 - 8x + 4x^{2} + 4x^{3} + x^{4} \stackrel{oracle}{=} (-2 + x^{2}) \cdot (6 + 4x + x^{2})$$

important for efficiency: keep polynomials small

factorization	n = 10	
none square-free full	12h19m/1024 9h31m/768 0 59s/16	
none square-free full	12 g	2h19m/1024 9h31m/768 0.59s/16

• time/degree of representing polynomials for \sum^{n} *[*-

- algorithm
 - apply certified square-free factorization

 $-108 - 72x + 108x^{2} + 84x^{3} - 27x^{4} - 32x^{5} - 2x^{6} + 4x^{7} + x^{8}$ $= (-3 + x^2)^2 \cdot (-12 - 8x + 4x^2 + 4x^3 + x^4)^1$

invoke oracle on each factor

$$-12 - 8x + 4x^{2} + 4x^{3} + x^{4} \stackrel{oracle}{=} (-2 + x^{2}) \cdot (6 + 4x + x^{2})$$

check equality at runtime, not irreducibility

Simplification of Representation

Comparison of Real Algebraic Numbers

1. decide whether (p, [l, r]) and (q, [l', r']) encode same number

THE root of p in [l, r] = THE root of q in [l', r'] \iff gcd p q has real root in $[l, r] \cap [l', r']$

 if not, tighten bounds of both numbers via bisection until intervals are disjoint (bisection algorithm again defined by partial-function)

how to perform operations like +, -, ×, /, $\sqrt[n]{\cdot}$, etc. on algebraic numbers (p, [l, r]) and (q, [l', r'])?

how to perform operations like +, -, ×, /, $\sqrt[n]{\cdot}$, etc. on algebraic numbers (p, [l, r]) and (q, [l', r'])?

- 1. determine polynomial
 - negation: p(-x)
 - *n*√·: *p*(*xⁿ*)
 - addition: resultant(p(x y), q(y))

how to perform operations like +, -, ×, /, $\sqrt[n]{\cdot}$, etc. on algebraic numbers (p, [l, r]) and (q, [l', r'])?

- 1. determine polynomial
 - negation: p(-x)
 - *n*√·: *p*(*xⁿ*)
 - addition: resultant(p(x y), q(y))

2. compute initial interval, e.g. [l + l', r + r'] for addition

how to perform operations like +, -, ×, /, $\sqrt[n]{}$, etc. on algebraic numbers (p, [l, r]) and (q, [l', r'])?

- 1. determine polynomial
 - negation: p(-x)
 - *n*√·: *p*(*xⁿ*)
 - addition: resultant(p(x y), q(y))
- 2. compute initial interval, e.g. [l + l', r + r'] for addition
- 3. tighten intervals [l, r] and [l', r'] until resulting interval contains unique root

how to perform operations like +, -, ×, /, $\sqrt[n]{\cdot}$, etc. on algebraic numbers (p, [l, r]) and (q, [l', r'])?

- 1. determine polynomial
 - negation: p(-x)
 - *n*√·: *p*(*xⁿ*)
 - addition: resultant(p(x y), q(y))
- 2. compute initial interval, e.g. [l + l', r + r'] for addition
- 3. tighten intervals [l, r] and [l', r'] until resulting interval contains unique root
- 4. optimize representation

Increase Efficiency, Representation – Part 2

- factorizations in between to simplify representations
- efficient (not optimal) computation of resultants and GCDs
- tuned algorithms on polynomials
- special treatment for rational numbers

Increase Efficiency, Representation – Part 2

- factorizations in between to simplify representations
- efficient (not optimal) computation of resultants and GCDs
- tuned algorithms on polynomials
- special treatment for rational numbers

```
datatype real_alg_3 =
  Rational rat
  Irrational "quadruple with invariants"
```

typedef real_alg_4 = "real_alg_3 with invariant"

definition real_of_4 :: real_alg_4 => real

quotient_type real_alg =
real_alg_4 / "% x y. real_of_4 x = real_of_4 y"

 \bullet missing: equivalent of Sturm's method for $\mathbb C$

- $\bullet\,$ missing: equivalent of Sturm's method for $\mathbb C$
- take existing Cartesian representation: (*Re*(*x*), *Im*(*x*))

- missing: equivalent of Sturm's method for $\ensuremath{\mathbb{C}}$
- take existing Cartesian representation: (*Re*(*x*), *Im*(*x*))
- only new difficulty: find complex roots, e.g., of $p = 1 + x + x^3$

- missing: equivalent of Sturm's method for $\ensuremath{\mathbb{C}}$
- take existing Cartesian representation: (Re(x), Im(x))
- only new difficulty: find complex roots, e.g., of $p = 1 + x + x^3$
- basic idea:
 - complex roots of rational polynomials come in complex conjugate pairs
 - \Rightarrow if x is root of p then \bar{x} is root of p

- $\bullet\,$ missing: equivalent of Sturm's method for $\mathbb C$
- take existing Cartesian representation: (Re(x), Im(x))
- only new difficulty: find complex roots, e.g., of $p = 1 + x + x^3$
- basic idea:
 - complex roots of rational polynomials come in complex conjugate pairs
 - \Rightarrow if x is root of p then \bar{x} is root of p
 - $\Rightarrow Re(x) = \frac{1}{2}(x + \bar{x})$ is root of the polynomial for $\frac{1}{2} \odot (p \oplus p)$

- missing: equivalent of Sturm's method for $\mathbb C$
- take existing Cartesian representation: (Re(x), Im(x))
- only new difficulty: find complex roots, e.g., of $p = 1 + x + x^3$
- basic idea:
 - complex roots of rational polynomials come in complex conjugate pairs
 - \Rightarrow if x is root of p then \bar{x} is root of p
 - $\Rightarrow Re(x) = \frac{1}{2}(x + \bar{x}) \text{ is root of the polynomial for } \frac{1}{2} \odot (p \oplus p)$ $\Rightarrow Im(x) = \frac{1}{2i}(x \bar{x}) \text{ is root of the polynomial for } \frac{1}{2i} \odot (p \oplus p)$

- $\bullet\,$ missing: equivalent of Sturm's method for $\mathbb C$
- take existing Cartesian representation: (Re(x), Im(x))
- only new difficulty: find complex roots, e.g., of $p = 1 + x + x^3$
- basic idea:
 - complex roots of rational polynomials come in complex conjugate pairs
 - \Rightarrow if x is root of p then \bar{x} is root of p
 - $\Rightarrow Re(x) = \frac{1}{2}(x + \bar{x})$ is root of the polynomial for $\frac{1}{2} \odot (p \oplus p)$
 - \Rightarrow $Im(x) = \frac{1}{2i}(x \bar{x})$ is root of the polynomial for $\frac{1}{2i} \odot (p \ominus p)$
 - \Rightarrow compute all these roots

$$Re(x) = \left(SOME \ x. \ 8 - 24x - 88x^3 + 96x^4 + 288x^5 + 384x^6 + 768x^7 + 512x^9 = 0\right)$$
$$Im(x) = \left(SOME \ x. \ \frac{961}{4096}x^2 - \frac{279}{512}x^4 + \frac{453}{256}x^6 - \frac{85}{32}x^8 + \frac{27}{8}x^{10} - 3x^{12} + x^{14} = 0\right)$$
Complex Algebraic Numbers in Isabelle

- $\bullet\,$ missing: equivalent of Sturm's method for $\mathbb C$
- take existing Cartesian representation: (Re(x), Im(x))
- only new difficulty: find complex roots, e.g., of $p = 1 + x + x^3$
- basic idea:
 - complex roots of rational polynomials come in complex conjugate pairs
 - \Rightarrow if x is root of p then \bar{x} is root of p
 - $\Rightarrow Re(x) = \frac{1}{2}(x + \bar{x})$ is root of the polynomial for $\frac{1}{2} \odot (p \oplus p)$
 - \Rightarrow $Im(x) = \frac{1}{2i}(x \bar{x})$ is root of the polynomial for $\frac{1}{2i} \odot (p \ominus p)$
 - \Rightarrow compute all these roots

$$Re(x) = \left(SOME \ x. \ \left(-\frac{1}{8} + \frac{1}{4}x + x^3\right) \cdot \left(1 + x + x^3\right) = 0\right)$$
$$Im(x) = \left(SOME \ x. \ \left(-\frac{31}{64} + \frac{9}{16}x^2 - \frac{3}{2}x^4 + x^6\right) \cdot x = 0\right)$$

Complex Algebraic Numbers in Isabelle

- missing: equivalent of Sturm's method for $\ensuremath{\mathbb{C}}$
- take existing Cartesian representation: (Re(x), Im(x))
- only new difficulty: find complex roots, e.g., of $p = 1 + x + x^3$
- basic idea:
 - complex roots of rational polynomials come in complex conjugate pairs
 - \Rightarrow if x is root of p then \bar{x} is root of p
 - $\Rightarrow Re(x) = \frac{1}{2}(x + \bar{x})$ is root of the polynomial for $\frac{1}{2} \odot (p \oplus p)$
 - \Rightarrow $Im(x) = \frac{1}{2i}(x \bar{x})$ is root of the polynomial for $\frac{1}{2i} \odot (p \ominus p)$
 - \Rightarrow compute all these roots

$$Re(x) = \left(SOME \ x. \ \left(-\frac{1}{8} + \frac{1}{4}x + x^3\right) \cdot \left(1 + x + x^3\right) = 0\right)$$
$$Im(x) = \left(SOME \ x. \ \left(-\frac{31}{64} + \frac{9}{16}x^2 - \frac{3}{2}x^4 + x^6\right) \cdot x = 0\right)$$

and filter: for all candidates z = Re(x) + Im(x)i, test p(z) = 0

Summary

- formalization of real and complex algebraic numbers, implementing ℝ and ℂ
 +, -, ×, /, ⁿ√·, [·], =, <, *i*, *Re*, *Im*, show
- factorization algorithms for rational polynomials over $\mathbb{Q},\,\mathbb{R},\,\mathbb{C}$
- heavily relying on Sturm's method and matrix library
- based on factorization oracle (S. Joosten @ Isabelle workshop)
- \sim 20.000 loc, available in archive of formal proofs