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Timed Automata
• Timed Automata (TA) ≈ Finite Automata with clocks

� Clock guards on transitions and clock invariants on locations
� Transitions can reset clocks



Timed Automata (2)
• Model Checking: PSPACE

� Initial decidability from the region construction of Alur & Dill
� Practical tools (UPPAAL): symbolic forward reachability algorithm

• Bouyer: forward reachability analysis not correct for
general TA
� However, correctness given for the class of diagonal-free TA

• This formalization: formalization of TA basics and 
symbolic forward reachability analysis in Isabelle/HOL
� Region construction as a reasoning tool



This Formalization
• Formalization of TA basics and forward reachability 

analysis
• Region construction for decidability and as a reasoning 

tool
• Symbolic analysis with Difference Bound Matrices 

(DBMs)
• Correctness of approximation operation forward 

reachability analysis (Bouyer)



Semantics Zoo

✓

Zone Semantics

Symbolic Zone Semantics

Symbolic Zone Semantics + Normalization

Region Semantics✓

✓
Zone Semantics approx. by ⍺-regions

Zone Semantics approx. by β-regions

Operational Semantics

Given start state         and destination l’, is 
there a run                                  for some u’ ?

(l, u)
A ` (l, u) !⇤ (l0, u0)



Formalization – Clock Constraints

and particularly the rather intricate developments towards the correctness proof
for the approximation operation – both of which pertain to practical real-time
model checking.

Unless otherwise stated, our formalizations of the basic notions and DBMs are
based on a popular tutorial by Bengtsson and Yi [4], while the developments for
the region constructions and the final correctness result follow Bouyer’s precise
work.

2 Diagonal-Free Timed Automata in Isabelle/HOL

2.1 Syntactic Definition

Compared to standard finite automata, timed automata introduce a notion of
clocks. We will fix a type 0

c for the space of clocks, type 0
t for time, and a type

0
s for locations. While most of our formalizations only require 0

t to belong to a
custom type class for totally ordered dense abelian groups, we worked on the
concrete type real for the region construction for simplicity. Fig. 1 depicts an
example of a diagonal-free timed automaton.

s1

c1  3

s2

c1 > 2 ^ c2  2

c1 < 1, a2, c2 := 0
c1  3, a1, c1 := 0

a3

Fig. 1: Example of a diagonal-free timed automaton with two clocks.

Locations and transitions are guarded with clock constraints, which have to be
fulfilled to stay in a location or to transition between them. The variants of these
constraints are modeled by

datatype ( 0c, 0
t) cconstraint =

AND (( 0c, 0
t) cconstraint) (( 0c, 0

t) cconstraint) |
LT

0
c

0
t | LE 0

c

0
t | EQ 0
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t | GT

0
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t | GE

0
c

0
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where the atomic constraints in the second line represent the constraint c ⇠ d

for ⇠ = <, , =, >, �, respectively. The sole di↵erence to the full class of timed
automata is that those would also allow constraints of the form c1 � c2 ⇠ d. We
define a timed automaton A as a pair (T , I) where I :: 0

s ) ( 0c, 0
t) cconstraint

is an assignment of clock invariants to locations; T is a set of transitions written
as A ` l �!g ,a,r

l

0 where

– l :: 0
s and l

0 :: 0
s are start and successor location,
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for .

Diagonal-free TA: No constraints of the form c1 � c2 ⇠ d .
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Formalization – Timed Automata
• Timed Automaton 

�

� a set of transitions of the form 
� start location
� end location
� action label
� guard
� clocks to reset

I :: 0
s ) (0c, 0

t) cconstraint

T A ` l �!g,a,r l0
l :: 0s

l0 :: 0s

g :: (0c, 0
t) cconstraint

r :: 0c list

a :: 0a



Operational Semantics
• Valuations                          Time lapse:  
• States 
• Constraint satisfaction

• Delay steps

• Action steps

– g :: ( 0c, 0
t) cconstraint is the guard of the transition,

– a :: 0
a is an action label,

– and r :: 0
c list is a list of clocks that will be reset to zero when the transition

is taken.

Standard definitions of timed automata would include a fixed set of locations
with a designated start location and a set of end locations. The language empti-
ness problem usually asks if any number of legal transitions can be taken to reach
an end location from the start location. Thus we can confine ourselves to study
reachability and implicitly assume the set of locations to be given by the tran-
sitions of the automaton. Note that although the definition of clock constraints
allows constants from the whole time space, we will later crucially restrict them
to the natural numbers in order to obtain decidability.

2.2 Operational Semantics

We want to define an operational semantics for timed automata via an inductive
relation. States of timed automata are pairs of a location and a clock valua-

tion of type 0
c ) 0

t assigning time values to clocks. Time lapse is modeled by
shifting a clock valuation u by a constant value d : u � d = (�x . u x + d).
Finally, we connect clock valuations and constraints by writing, for instance,
u ` AND (LT c1 1 ) (EQ c2 2 ) if u c1 < 1 and u c2 = 2. The precise definition
is standard.

Using these definitions, the operational semantics can be defined as a rela-
tion between pairs of locations and clock valuations. More specifically, we define
action steps

A ` l �!g ,a,r
l

0 ^ u ` g ^ u

0 ` inv-of A l

0 ^ u

0 = [r!0 ]u

A ` hl , ui !a hl 0, u 0i

and delay steps via
u ` inv-of A l ^ u � d ` inv-of A l ^ 0  d

A ` hl , ui !d hl , u � di
. Here inv-of

(T , I) = I and the notation [r ! 0 ]u means that we update the clocks in
r to 0 in u. We write A ` hl , ui ! hl 0,u 0i if either A ` hl , ui !a hl 0, u 0i or

A ` hl , ui !d hl 0, u 0i.

2.3 Zone Semantics

The first conceptual step to get from this abstract operational semantics towards
concrete algorithms on DBMs is to consider zones. Informally, the concept is
simple; a zone is the set of clock valuations fulfilling a clock constraint: ( 0c, 0
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relation. States of timed automata are pairs of a location and a clock valua-

tion of type 0
c ) 0

t assigning time values to clocks. Time lapse is modeled by
shifting a clock valuation u by a constant value d : u � d = (�x . u x + d).
Finally, we connect clock valuations and constraints by writing, for instance,
u ` AND (LT c1 1 ) (EQ c2 2 ) if u c1 < 1 and u c2 = 2. The precise definition
is standard.

Using these definitions, the operational semantics can be defined as a rela-
tion between pairs of locations and clock valuations. More specifically, we define
action steps

A ` l �!g ,a,r
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0 ^ u ` g ^ u
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and delay steps via
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. Here inv-of

(T , I) = I and the notation [r ! 0 ]u means that we update the clocks in
r to 0 in u. We write A ` hl , ui ! hl 0,u 0i if either A ` hl , ui !a hl 0, u 0i or

A ` hl , ui !d hl 0, u 0i.

2.3 Zone Semantics

The first conceptual step to get from this abstract operational semantics towards
concrete algorithms on DBMs is to consider zones. Informally, the concept is
simple; a zone is the set of clock valuations fulfilling a clock constraint: ( 0c, 0

t)
zone ⌘ ( 0c ) 0

t) set. This allows us to abstract from a concrete state hl , ui to
a pair of location and zone hl , Z i. We need the following operations on zones:
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Z :: (0c ) 0t) set
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{u | u c1 = 0 ^ u c2  2}{u | u c1 > 1 ^ u c2 � u c1 < 1}
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Naturally, we define a zone-based semantics by means of another inductive rela-
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A ` hl , Z i  hl , (Z \ {u | u ` inv-of A l})" \ {u | u ` inv-of A l}i

A ` l �!g ,a,r
l

0

A ` hl , Z i  hl 0, (Z \ {u | u ` g})r ! 0 \ {u | u ` inv-of A l

0}i

With the help of two easy inductive arguments one can show soundness and
completeness of this semantics w.r.t. the original semantics (where ⇤ is the Kleene

star operator):

(Sound) A ` hl , Z i  ⇤ hl 0, Z 0i ^ u

0 2 Z

0 =) 9 u2Z . A ` hl , ui !⇤ hl 0, u 0i
(Complete) A ` hl , ui !⇤ hl 0, u 0i ^ u 2 Z

=) 9Z 0
. A ` hl , Z i  ⇤ hl 0, Z 0i ^ u

0 2 Z

0

This is an example of where proof assistants really shine. Not only are our Isabelle
proofs shorter to write down than for example the proof given in [18] – we have
also found that the less general version given there (i.e. where Z = {u}) yields
an induction hypothesis that is not strong enough in the completeness proof.
This slight lapse is hard to detect in a human-written proof.

3 Di↵erence Bound Matrices

3.1 Fundamentals

Di↵erence Bound Matrices constrain di↵erences of clocks (or more precisely, the
di↵erence of values assigned to individual clocks by a valuation). The possible
constraints are given by:

datatype 0
t DBMEntry = Le

0
t | Lt 0

t | 1

This yields a simple definition of DBMs: 0
t DBM ⌘ nat ) nat ) 0

t DBMEntry .
To relate clocks with rows and columns of a DBM, we use a numbering v ::
0
c ) nat for clocks. DBMs will regularly be accompanied by a natural number
n, which designates the number of clocks constrained by the matrix. Although
this definition complicates our formalization at times, we hope that it allows us
to easily obtain executable code for DBMs while retaining a flexible “interface”
for applications. To be able to represent the full set of clock constraints with
DBMs, we add an imaginary clock 0, which shall be assigned to 0 in every val-
uation. Zero column and row will always be reserved for 0 (i.e. 8 c. v c > 0 ). If
necessary, we assume that v is an injection or surjection for indices less or equal
to n. Informally, the zone [M ]v ,n represented by a DBM M is defined as

{u | 8 c1, c2, d . v c1, v c2  n �!
(M (v c1) (v c2) = Lt d �! u c1 � u c2 < d)
^ (M (v c1) (v c2) = Le d �! u c1 � u c2  d)}
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an induction hypothesis that is not strong enough in the completeness proof.
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Naturally, we define a zone-based semantics by means of another inductive rela-
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This is an example of where proof assistants really shine. Not only are our Isabelle
proofs shorter to write down than for example the proof given in [18] – we have
also found that the less general version given there (i.e. where Z = {u}) yields
an induction hypothesis that is not strong enough in the completeness proof.
This slight lapse is hard to detect in a human-written proof.

3 Di↵erence Bound Matrices

3.1 Fundamentals

Di↵erence Bound Matrices constrain di↵erences of clocks (or more precisely, the
di↵erence of values assigned to individual clocks by a valuation). The possible
constraints are given by:
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0
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This yields a simple definition of DBMs: 0
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t DBMEntry .
To relate clocks with rows and columns of a DBM, we use a numbering v ::
0
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n, which designates the number of clocks constrained by the matrix. Although
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assuming that v 0 = 0.

Example 1.

0 c1 c2 !0 1 Lt (�3 ) Le 0

c1 1 1 1
c2 Le 4 1 1

0 c1 c2 !0 Le 0 Lt (�3 ) Le 0

c1 1 Le 0 1
c2 Le 4 Lt 1 Le 0

0 c1 c2 !0 1 Le 0 Le 0

c1 1 1 Lt (�3 )
c2 1 Le 3 Le 0

The left two DBMs both represent the zone described by the constraint c1 > 3

^ c2  4, while the DBM on the right represents the empty zone. 1

To simplify the subsequent discussion, we will set 0
c = nat, v = id and assume

that the set of clocks of the automaton in question is {1 ..n}. We define an
ordering relation � on 0

t DBMEntry by means of

a < b

Le a � Le b

a < b

Le a � Lt b

a < b

Lt a � Lt b

a  b

Lt a � Le b Lt � 1 Le � 1

and extend it to � in the obvious way. Observe that � and � are total orders.
Additionally, we get the following important ordering property of DBMs (by
nearly automatic proof):

Lemma 1. 8 i j . i  n �! j  n �! M i j � M

0
i j =) [M ]v ,n ✓ [M 0]v ,n

We can interpret DBMs as a graph with clocks as vertices and di↵erence con-
straints as edges between them. To give a concrete meaning to this interpreta-
tion, we first define addition on DBM entries: a � 1 = 1; 1 � b = 1; and
(⇠1 x ) � (⇠2 y) = ⇠ 0 (x + y) where ⇠ 0 = Le if ⇠1 = ⇠2 = Le and ⇠ 0 = Lt if
otherwise. Now the length of a path (of DBM indices representing clocks) defined
by 2

len M s t [] = M s t and len M s t (w · ws) = M s w � len M w t ws

gives the key to reasoning about this interpretation: for any u 2 [M ]v ,n and i ,

j , xs with set (i · j · xs) ✓ {0 ..n},3 we get Lt (u i � u j ) � len M i j xs via
induction on xs. Setting i = j, we can immediately conclude that DBMs with
negative cycles are always empty. In the following we will make use of a predicate
expressing that a DBM does not contain any negative cycles which only consist
of vertices less or equal to k for some k :

cycle-free-up-to M k n ⌘
8 i xs. i  n ^ set xs ✓ {0 ..k} �! Le 0 � len M i i xs

We write cycle-free M n if cycle-free-up-to M n n.

1 We assume a default clock numbering, mapping ci to index i, for our examples
2 [] denotes the empty list and x · xs is a list constructed from head x and tail xs
3 set xs is the set of elements contained in xs
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i j =) [M ]v ,n ✓ [M 0]v ,n

We can interpret DBMs as a graph with clocks as vertices and di↵erence con-
straints as edges between them. To give a concrete meaning to this interpreta-
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otherwise. Now the length of a path (of DBM indices representing clocks) defined
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gives the key to reasoning about this interpretation: for any u 2 [M ]v ,n and i ,

j , xs with set (i · j · xs) ✓ {0 ..n},3 we get Lt (u i � u j ) � len M i j xs via
induction on xs. Setting i = j, we can immediately conclude that DBMs with
negative cycles are always empty. In the following we will make use of a predicate
expressing that a DBM does not contain any negative cycles which only consist
of vertices less or equal to k for some k :

cycle-free-up-to M k n ⌘
8 i xs. i  n ^ set xs ✓ {0 ..k} �! Le 0 � len M i i xs

We write cycle-free M n if cycle-free-up-to M n n.

1 We assume a default clock numbering, mapping ci to index i, for our examples
2 [] denotes the empty list and x · xs is a list constructed from head x and tail xs
3 set xs is the set of elements contained in xs

assuming that v 0 = 0.
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^ c2  4, while the DBM on the right represents the empty zone. 1
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DBM Operations
• Intersection

� Correctness: 

• Similarly reset, delay and intersection with clock 
constraints

A uB = (� i j. min (A i j) (B i j))
[A]v,n \ [B]v,n = [A uB]v,n



DBM Operations (2)
• Floyd-Warshall algorithm

� Computes canonical form:

� or negative diagonal entry
� HOL formulation: recursive function with pointwise updates

3.2 Operations

We define the necessary operations on DBMs to obtain a basic forward analysis
algorithm for reachability.

Floyd-Warshall algorithm From Ex. 1 we can see that to be able to tell if two
DBMs represent the same zone, we first need to put them into some canonical

form. Formally, this canonical form is characterized by the following property:

canonical M n ⌘ 8 i j k . i  n ^ j  n ^ k  n �! M i k � M i j � M j k

The key property of non-empty canonical DBMs is that we can find a valua-
tion u 2 [M ]v ,n with u i � u j = d for any d between �M j i and M i j, or
equivalently:

Lemma 2. Assume Le d � M i j, Le (�d) � M j i for M with cycle-free M n,

canonical M n, and i , j  n with i 6= j. We define M

0
by setting M

0
i j = Le d

and M

0
j i = Le (�d) and M

0
i

0
j

0 = M i

0
j

0
for all (i 0,j 0) where (i 0,j 0) 6= (i ,j ),

(j ,i). Then [M 0]v ,n ✓ [M ]v ,n and cycle-free M

0
n.

Proof. From Lemma 1, we get [M 0]v ,n ✓ [M ]v ,n. It remains to show that M

0

does not contain a negative cycle. Suppose there is one. Then we can also
find a smallest negative cycle, which, without loss of generality, is of the form
len M

0
i i (j · xs) � Le 0 for some xs where i , j /2 set xs. This proof step is

rather intricate in Isabelle. We use a function that explicitly computes smallest
negative cycles. An inductive argument yields a result that allows us to ro-
tate cycles. Now, we get Le d � len M

0
j i xs � Le 0 . We have xs 6= [] as this

would directly give us the contradiction Le d � Le (�d) � Le 0 . This means
that Le d � len M j i xs � Le 0 (by induction on xs), and because M is canon-
ical, M j i � Le (�d), which is a contradiction to our assumption. ut

An important consequence is that any canonical DBM without a negative diag-
onal has at least one valuation, which we can construct by repeatedly applying
the theorem. Observe that this also implies that a DBM in canonical form is
empty i↵ there is a negative entry on its diagonal.

The canonical form can be computed by the Floyd-Warshall algorithm for
the all-pairs shortest paths problem. A simple HOL formulation of the algorithm
is

fw-upd M k i j ⌘ M (i := (M i)(j := min (M i j ) (M i k � M k j )))

fw M n 0 0 0 = fw-upd M 0 0 0

fw M n (Suc k) 0 0 = fw-upd (fw M n k n n) (Suc k) 0 0

fw M n k (Suc i) 0 = fw-upd (fw M n k i n) k (Suc i) 0
fw M n k i (Suc j ) = fw-upd (fw M n k i j ) k i (Suc j )

where f (a := b) ⌘ �x . if x = a then b else f x. We abbreviate fw M n n n n

as FW M n. To prove that this algorithm computes the tightest di↵erence con-
straint for all pairs of clocks, we claim:

assuming that v 0 = 0.

Example 1.

0 c1 c2 !0 1 Lt (�3 ) Le 0

c1 1 1 1
c2 Le 4 1 1

0 c1 c2 !0 Le 0 Lt (�3 ) Le 0

c1 1 Le 0 1
c2 Le 4 Lt 1 Le 0

0 c1 c2 !0 1 Le 0 Le 0

c1 1 1 Lt (�3 )
c2 1 Le 3 Le 0
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the all-pairs shortest paths problem. A simple HOL formulation of the algorithm
is

fw-upd M k i j ⌘ M (i := (M i)(j := min (M i j ) (M i k � M k j )))

fw M n 0 0 0 = fw-upd M 0 0 0

fw M n (Suc k) 0 0 = fw-upd (fw M n k n n) (Suc k) 0 0

fw M n k (Suc i) 0 = fw-upd (fw M n k i n) k (Suc i) 0
fw M n k i (Suc j ) = fw-upd (fw M n k i j ) k i (Suc j )

where f (a := b) ⌘ �x . if x = a then b else f x. We abbreviate fw M n n n n

as FW M n. To prove that this algorithm computes the tightest di↵erence con-
straint for all pairs of clocks, we claim:

assuming that v 0 = 0.

Example 1.

0 c1 c2 !0 1 Lt (�3 ) Le 0

c1 1 1 1
c2 Le 4 1 1

0 c1 c2 !0 Le 0 Lt (�3 ) Le 0

c1 1 Le 0 1
c2 Le 4 Lt 1 Le 0

0 c1 c2 !0 1 Le 0 Le 0

c1 1 1 Lt (�3 )
c2 1 Le 3 Le 0

The left two DBMs both represent the zone described by the constraint c1 > 3

^ c2  4, while the DBM on the right represents the empty zone. 1

To simplify the subsequent discussion, we will set 0
c = nat, v = id and assume

that the set of clocks of the automaton in question is {1 ..n}. We define an
ordering relation � on 0

t DBMEntry by means of

a < b

Le a � Le b

a < b

Le a � Lt b

a < b

Lt a � Lt b

a  b

Lt a � Le b Lt � 1 Le � 1

and extend it to � in the obvious way. Observe that � and � are total orders.
Additionally, we get the following important ordering property of DBMs (by
nearly automatic proof):

Lemma 1. 8 i j . i  n �! j  n �! M i j � M

0
i j =) [M ]v ,n ✓ [M 0]v ,n

We can interpret DBMs as a graph with clocks as vertices and di↵erence con-
straints as edges between them. To give a concrete meaning to this interpreta-
tion, we first define addition on DBM entries: a � 1 = 1; 1 � b = 1; and
(⇠1 x ) � (⇠2 y) = ⇠ 0 (x + y) where ⇠ 0 = Le if ⇠1 = ⇠2 = Le and ⇠ 0 = Lt if
otherwise. Now the length of a path (of DBM indices representing clocks) defined
by 2

len M s t [] = M s t and len M s t (w · ws) = M s w � len M w t ws

gives the key to reasoning about this interpretation: for any u 2 [M ]v ,n and i ,

j , xs with set (i · j · xs) ✓ {0 ..n},3 we get Lt (u i � u j ) � len M i j xs via
induction on xs. Setting i = j, we can immediately conclude that DBMs with
negative cycles are always empty. In the following we will make use of a predicate
expressing that a DBM does not contain any negative cycles which only consist
of vertices less or equal to k for some k :

cycle-free-up-to M k n ⌘
8 i xs. i  n ^ set xs ✓ {0 ..k} �! Le 0 � len M i i xs

We write cycle-free M n if cycle-free-up-to M n n.

1 We assume a default clock numbering, mapping ci to index i, for our examples
2 [] denotes the empty list and x · xs is a list constructed from head x and tail xs
3 set xs is the set of elements contained in xs
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DBM Operations (2)
• Intersection

�

• Reset
� Want                 if                                         
à and 
� All other constraints regarding c invalidated (i.e. set to ∞)
� Correctness:

• Similarly delay and intersection with clock constraints

Theorem 1.
cycle-free-up-to M k n ^ i

0  i ^ j

0  j ^ i  n ^ j  n ^ k  n =)
Min {len M i

0
j

0
xs | set xs ✓ {0 ..k} ^ i

0
/2 set xs ^ j

0
/2 set xs ^ distinct xs}

= fw M n k i j i

0
j

0

The proof is a nested induction, which follows the program structure and uses a
standard argument. The theorem implies that FW computes a canonical form:

Corollary 1. cycle-free M n =) canonical (FW M n) n

The Floyd-Warshall algorithm also detects negative cycles by computing a neg-
ative diagonal entry. The key observation is that a matrix of this kind either
has a negative diagonal entry to start with, or there is a maximal k < n with
cycle-free-up-to M k n. The latter means that the algorithm computes a negative
diagonal entry in iteration k + 1. In either case the negative diagonal entry will
be preserved by monotonicity of the algorithm. This yields an emptiness check
for DBMs.

Intersection The intersection of two DBMs is trivial to compute. It is simply
the point-wise minimum: And A B ⌘ �i j . min (A i j ) (B i j ). The operation is
correct in the following sense: [A]v ,n \ [B ]v ,n = [And A B ]v ,n . The ✓-direction
can directly be proved by Isabelle’s simplifier, while ◆ requires a rather lengthy
proof by cases.

Reset We need an operator reset such that u c = d for all u 2 [reset M n c d ]v ,n.
Thus we define (reset M n c d) c 0 = Le d and (reset M n c d) 0 c = Le (�d).
By doing so, all di↵erence constraints involving c are invalidated. Therefore we
set the corresponding DBM entries to 1. However, this alone does not yield
a correct operation. Consider clocks c1, c2 and c3 and a DBM represented by
the clock constraint c1 � c2 + 1 ^ c1  c3. By setting c1 to 0, we will lose
all constraints on c2 and c3. This means that the resulting zone will contain a
valuation u with u c1 = u c2 = u c3 = 0. There is clearly no way to set c1

back to a di↵erent value such the resulting valuation would satisfy the original
constraint. The way to resolve this issue is to encode the information we had
about c2 and c3 in the original constraint (or DBM) also in the new DBM. This
is, we derive c2 � c3  �1. Concretely, we calculate (reset M n i d) j k =
min (M j i + M i k) (M j k) for all j , k  n. Note that this computation does
nothing if M is already in canonical from, allowing a simpler implementation.

For a list of clocks cs and a list of time stamps ts (|cs| = |ts|), set-clocks cs ts u

is the valuation for which (set-clocks cs ts u) csi = tsi and the value of u c is
unchanged for all other clocks c /2 set cs. We lift reset to reset many clocks at
once by simply folding it over the list of clocks. We proved correctness of the
lifted operation (reset 0):

(Sound) (8 c2set cs. 0 < c ^ c  n) ^ u 2 [reset 0 M n cs v d ]v ,n
=) 9 ts. set-clocks cs ts u 2 [M ]v ,n
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0
/2 set xs ^ j

0
/2 set xs ^ distinct xs}
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0
j

0
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DBM Semantics
• Symbolic zone semantics

• Compare
• Sound & complete w.r.t. zone semantics
• Symbolic computation procedure for reachability but 

infinite search space

Mi = abstr I(l) v

A ` hl,Mi v,n hl, up (M uMi) uMii

A ` l �!g,a,r l0 Mi = abstr I(l0) v

A ` hl,Mi v,n hl0, reset0 (M u abstr g v) n r v 0 uMii



DBM Semantics
• Symbolic zone semantics

• Sound & complete w.r.t. zone semantics
• Symbolic computation procedure for reachability but 

infinite search space

A ` l �!g,a,r l0 Mi = abstr I(l0) v

A ` hl,Mi DBM hl0, reset0 (M u abstr g v) n r v 0 uMii

Mi = abstr I(l) v

A ` hl,Mi DBM hl, up (M uMi) uMii



Obtaining a Finite Search Space
• Goal: Only compute finitely many different matrices

� Idea: cut off DBM entries at maximal constant of automaton for 
each clock

à Normalization
� Clock ceiling 

� Proving that this preserves reachability is the hardest part

k :: 0c ) nat

k c1

k c2



Regions
• Regions: partition of zones that yields a correct abstraction

• Approximating zones with regions (not convex):

• Convex approximation:

c1

c2

c1

c2

c1

c2

Fig. 2: (1) A region and its time successors in R↵, (2) the ↵-closure of a zone,
and (3) the �-approximation of a zone for X = {c1, c2} with k c1 = 3 and k c2

= 2.

classes according to r such that a valuation u can be chosen for which frac (u x )
 frac (u y) i↵ (x , y) 2 r . This ordering property of finite total preorders is
non-trivial to formalize and makes this step rather technical.

4.2 Decidability with Regions

How are regions and timed automata connected? We will present three key
properties that connect regions to time lapse, clock resets, and clock constraints,
respectively, allowing us to implement timed automata with the help of regions.
Let [u]R↵ 2 R↵ be the unique region containing u. We call [u � t ]R↵ a time

successor of [u]R↵ for t � 0 and denote by Succ R↵ R the set of all such time
successors of all u 2 R (cf. Fig. 2.1). Now the three key properties are in order
of decreasing di�culty:

(Set of regions) R 2 R↵ ^ u 2 R ^ R

0 2 Succ R↵ R

=) 9 t�0 . [u � t]R↵ = R

0

(Compatibility with resets) R 2 R↵ ^ u 2 R ^ 0  d ^ d  k x ^ x 2 X

=) [u(x := d)]R↵ = {u(x := d) | u 2 R}
(Compatibility with constraints)

R 2 R↵ ^ 8 (x , m)2collect-clock-pairs cc. m  k x ^ x 2 X ^ m 2 IN
=) R ✓ {u | u ` cc} _ {u | u ` cc} \ R = ;

Proof. We concentrate on the set of regions property as it has the most in-
teresting formalization. Our proof combines elements of the “classic” result as
presented e.g., in [9], and Bouyer’s approach. Let R = region X I r 2 R↵ for some
I, r, let R 0 = [v � t ]R↵ , and assume u, v 2 R and t � 0. If I x = Greater (k x )
for all x 2 X (“upper-right region”), we have Succ R↵ R = {R} = {R 0} and
the proposition is obvious.

Otherwise observe that there exists a single closest successor Rsucc of R

(depicted as the thick, dark gray line in Fig. 2.1). We refer to Bouyer for a
formal construction of this successor. We can show the characteristic property
of this closest successor:

8 u 2 R. 8 t�0 . (u � t) /2 R �! (9 t 0t . (u � t

0) 2 Rsucc ^ t

0 � 0 )

At this point Bouyer states that the proposition follows by “immediate induc-
tion”. However, regarding formalization, this induction is not quite immediate.
For instance, we attempted induction on the set of successors. This necessi-
tates a proof that this set is monotone, which we did not find ourselves able
to prove without asserting the very property we were about to prove. Instead,
we split the argument in two: one for the case where t < 1 and the other for
the case where t is an integer. For the first case, consider the “critical” set C =
{x 2 X | 9 d . I x = Intv d ^ d + 1  u x + t}, the set of clocks for which u

� t is shifted beyond R’s interval boundaries. Observe that for the closest suc-
cessor, the critical set is either the same (if {x 2 X | 9 d . I x = Const d} 6=
;) or a strict subset (if otherwise). Thus the proposition follows by induction on
the cardinality of C. The case where t is an integer follows by direct proof over
the structure of regions. Shifting u first by frac t and then by btc, we arrive at
the proposition. ut

This allows us to define a region-based operational semantics for timed au-
tomata:

R 2 R↵ ^ R

0 2 Succ R↵ R ^ R [ R

0 ✓ {u | u ` inv-of A l}
A,R↵ ` hl , Ri  hl , R 0i

A ` l �!g ,a,r
l

0 ^ R 2 R↵

A,R↵ ` hl , Ri  hl 0, {[r!0 ]u | u 2 R ^ u ` g} \ {u | u ` inv-of A l

0}i

From the aforementioned properties, we proved its adequacy w.r.t. to reachabil-
ity:

A,R↵ ` hl ,[u]R↵i  ⇤ hl 0,R 0i ^ R

0 6= ;
 ! 9 u 0

. A ` hl , ui !⇤ hl 0, u 0i ^ [u 0]R↵ = R

0

Note that it is quite natural that this property is weaker compared to previous
ones: (sets of) regions only approximate zones and thus can contain valuations
that were never reachable in the concrete semantics.

4.3 Approximating Zone Semantics with Regions

From the pure decidability result on regions, we now move back towards zones by
approximating zones with the smallest set of regions that covers them. Formally
we define the ↵-closure of a zone Z : Closure↵ Z =

S
{R 2 R | R \ Z 6= ;}.

Observe that this set need not be convex (cf. Fig. 2.2). We use the ↵-closure
to define an operational semantics on zones that approximates a zone with its
↵-closure at the end of each step:

A ` hl , Z i  hl 0, Z 0i =) A ` hl , Z i  ↵ hl 0, Closure↵ Z

0i

Bouyer would now go and prove from the region properties that the ↵-closure
can be “pushed through” each step:
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Fig. 2: (1) A region and its time successors in R↵, (2) the ↵-closure of a zone,
and (3) the �-approximation of a zone for X = {c1, c2} with k c1 = 3 and k c2

= 2.
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Conclusion
• Current Formalization

� All important notions for timed automata: regions, zones, DBMs
� Correctness of symbolic reachability analysis using DBMs
� ~ 16.000 lines of code, available in the AFP

• Future / ongoing work
� Executable reachability analysis with imperative algorithms
� Fully verified model checking à needs modelling features such as 

networks of timed automata
� Decidability of reachability for probabilistic TA via region 

construction
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• Forward reachability via region construction in PVS

� Qingguo Xu and Huaikou Miao
� Establishes decidability, no symbolic analysis

• Framework for p-automata in Coq
� Christine Paulin-Mohring
� Scope: reasoning about (priced) timed automata in Coq
� No meta-theory on model checking

• Timed Automata Modeling Environment in PVS
� Myla Archer and Constance Heitmeyer
� Similarly: no meta-theory on model checking


