
1

Infeasible Paths Elimination
by Symb. Execution Techniques:

Proof of Correctness and Preservation of Paths

Romain Aissat, Frederic Voisin and Burkhart Wolff

Univ - Paris-Sud / LRI

Abstract
TRACER [8] is a tool for verifying safety properties of se-
quential C programs. TRACER attempts at building a finite
symbolic execution graph which over-approximates the set
of all concrete reach- able states and the set of feasible
paths.
We present an abstract framework for TRACER and
similar CEGAR-like systems [2, 3, 5, 6, 9]. The framework
provides 1) a graph-transformation based method for
reducing the feasible paths in control-flow graphs, 2) a
model for symbolic execution, subsumption, predicate
abstraction and invariant generation. In this framework we
formally prove two key properties: correct construction of
the symbolic states and preservation of feasible paths. The
framework focuses on core operations, leaving to concrete
prototypes to “fit in” heuristics for combining them.

Introduction: Control Flow Paths(CFG)
● A simple C program and its control-flow graph

1 void f(int x, bool b)
2 {
3 init();
4 while (x > 0){
5 if(b)
6 {P(&x); }
7 else
8 {Q(&x);}
9 return (x==0);
10 }

1

3: init()

9

5

6: P(&x) 8: Q(&x);

4

Paths of max 2 loop traversals: {[1,3,4,9], [1,3,4,5,6,4,9], [1,3,4,5,8,4,9],
[1,3,4,5,6,4,5,6,4,9], [1,3,4,5,8,4,5,8,4,9],[1,3,4,5,6,4,8,4,9], [1,3,4,5,8,4,5..]}

Introduction : Control Flow Paths
● Not all paths in the CFG are actually feasible,

i.e. possible wrt. to the operational semantics
for concrete input values for x and b.

● Actually, [1,3,4,5,6,4,8,4,9], [1,3,4,5,8,4,5,6,4,9]
are infeasible, ie no input exists that makes
this execution possible (assuming C semantics)

Introduction : Control Flow Paths
● Worse:

number of paths with k loop traversals : 2k

number of feasible paths ¨ ¨ ¨ : 2 * k

So, the probability for picking randomly
a feasible path decreases asymptotically to 0

● Even worse: experiments show, that this
gap is typical in practical programs.

This is the source of inefficiency of many
static analysis techniques: symb exec testing,
abstract interpretation, random testers ...

Introduction: Blue Calculus
● Remedy: Transformation of the CFG

1

3: init()

9

5

6: P(&x) 8: Q(&x);

4

After transformation: No infeasible paths any more . . .

1

3: init()

9

5

6: P(&x) 8: Q(&x);

4 4’

Contributions
● Rational Reconstruction of TRACER

[Jaffar et al, CAV12] into a formal model ATRACER

● ATRACER presents TRACER by 6 (non-deterministic)
Graph-Transformation Rules on Red-Black-Graphs*

● Proof in Isabelle/HOL:
Derivations in ATRACER preserve semantics

● Proof in Isabelle/HOL:
feasible paths should be preserved

● There should be less infeasible paths in general**

* no heuristics modeled

**which is experimentally confirmed, but we can’t give strong guarantees

8

Red-Black Graphs

Graph Transformation Rules:
 1) init
 ...

10

lock := 0
new := old +1

30

new ≠old

lock := 1
old := new

false

60

Skip

lock = 1 ∧new = old

1

3

56

7

8

E

20

40

21

4

2

true (after abstraction)

1 lock=0; new=old+1
2 while(new!=old){
3 k=1; old=new
4 if(*){lock=0;
 new=new+1;}
6 };
7 if (lock==0)
8 error()

9

Red-Black Graphs

Graph Transformation Rules:
 ...
 2) symbolic execution assign
 3) symbolic execution assume
 4) abstraction
 5) subsumption
 6) cut - rule (for infeasible paths)

* *

10

Formalisation

● Tasks:
● Red-Black Graphs, Paths, Fringes
● Labelled Transition Systems
● States, Configurations, Symbolic Execution
● Formalizing Graph Transformation Step

Relation as Inductive Definition
● Proof of Correctness and Preservation

11

Formalisation (1)
● Basic Machinery

Raw graphs, labelled transition systems:
–

–

– coherent arc sequences

– paths

12

Formalisation (2)
● Execution Data:

states, stores, (shallow) expressions :
–

– framing :

– program expressions as core syntax :

13

Formalisation (3)
● Red-Black-Graphs:

–

– red part
– black part
– the set of subsumption links
– initial configuration (contains precondition if any)
– mapping for symbolic variables to additional constraints

14

Formalisation (4)
● Example (out of 6): Symbolic Execution.

– ui_arc ra, the (unindexed) black counterpart of red arc ra must exist in the black graph,
– ArcExt.extends is an abbreviation that states that the source of ra must be an existing vertex

of the red graph, but not its target, and that the new red graph is obtained by adding ra to the
arcs of the old one,

– the source of ra is is not already subsumed,
– c′ is the new configuration obtained by symbolic execution of ra
– the new red-black graph rb′ is constructed from the old one by the resp. updates

15

Formalisation (5)
● The Blue Calculus:

16

Proof (1)
● Lemma: red paths lead always to weaker

configurations:

● Lemma: All red-black sub-paths included in
the corresponding “pure black” path-sets:

17

Proof (2)
● Main Result: all feasible paths were preserved

by the “blue calculus”:

18

Development Effort
● Effort for entire theory development:

– 12 theories,
– 7932 loc
– main proof:

2000 loc
Isar-style
highly struc-
tured proof

– proof techniques:
standard in-
duction proofs;
but many, many
cases to consider

19

Experimental Evaluation(1)
● The framework was implemented in an OCaml

prototype, providing also some first heuristics.
● Mergesort:

20

Experimental Evaluation(2)
● Bubblesort:

21

Conclusion
● first known formal proof for a predicate

abstraction framework.
● available in AFP soon.
● widely appliquable for enhancements

many static analysis techniques
● Main difficulty: working on graphs and giving

it enough inductive structure: red part, blue calc.
● Many open research problems,

including heuristics, code-generation,
calls in the labelling language.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

