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Abstract
TRACER [8] is a tool for verifying safety properties of se- 
quential C programs. TRACER attempts at building a finite 
symbolic execution graph which over-approximates the set 
of all concrete reach- able states and the set of feasible 
paths.
We present an abstract framework for TRACER and 
similar CEGAR-like systems [2, 3, 5, 6, 9]. The framework 
provides 1) a graph-transformation based method for 
reducing the feasible paths in control-flow graphs, 2) a 
model for symbolic execution, subsumption, predicate 
abstraction and invariant generation. In this framework we 
formally prove two key properties: correct construction of 
the symbolic states and preservation of feasible paths. The 
framework focuses on core operations, leaving to concrete 
prototypes to “fit in” heuristics for combining them.



Introduction: Control Flow Paths(CFG)
● A simple C program  and     its control-flow graph

1 void f(int x, bool b)
2 {
3    init();
4    while (x > 0){
5 if(b) 
6                {P(&x); }
7 else 
8     {Q(&x);}
9    return (x==0);
10 }

1

3: init()

9

5

6: P(&x) 8: Q(&x);

4

Paths of max  2 loop traversals: {[1,3,4,9], [1,3,4,5,6,4,9], [1,3,4,5,8,4,9],
[1,3,4,5,6,4,5,6,4,9], [1,3,4,5,8,4,5,8,4,9],[1,3,4,5,6,4,8,4,9], [1,3,4,5,8,4,5..]}



Introduction : Control Flow Paths
● Not all paths in the CFG are actually feasible,

i.e. possible wrt. to the operational semantics
for concrete input values for x and b.

● Actually, [1,3,4,5,6,4,8,4,9], [1,3,4,5,8,4,5,6,4,9] 
are infeasible, ie no input exists that makes
this execution possible (assuming C semantics)



Introduction : Control Flow Paths
● Worse: 

number of paths with k loop traversals  :   2k

number of feasible paths ¨     ¨      ¨        :   2 * k 

So, the probability for picking randomly
a feasible path decreases asymptotically to 0

● Even worse: experiments show, that this 
gap is typical in practical programs.

This is the source of inefficiency of many 
static analysis techniques: symb exec testing, 
abstract interpretation, random testers ...



Introduction: Blue Calculus
● Remedy: Transformation of the CFG

1

3: init()

9

5

6: P(&x) 8: Q(&x);

4

After transformation: No infeasible paths any more . . .

1

3: init()

9

5

6: P(&x) 8: Q(&x);

4 4’



Contributions
● Rational Reconstruction of TRACER 

[Jaffar et al, CAV12] into a formal model ATRACER

● ATRACER presents TRACER by 6 (non-deterministic) 
Graph-Transformation Rules on Red-Black-Graphs*

● Proof in Isabelle/HOL:
Derivations in ATRACER preserve semantics

● Proof in Isabelle/HOL:
feasible paths should be preserved

● There should be less infeasible paths in general** 

* no heuristics modeled

**which is experimentally confirmed, but we can’t give strong guarantees
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Red-Black Graphs

Graph Transformation Rules:
 1) init
  ...

10

lock := 0
new := old +1

30

new ≠old

lock := 1
old := new

false

60

Skip

lock = 1 ∧new = old

1

3

56

7

8

E

20

40

21

4

2

true (after abstraction)

1  lock=0; new=old+1
2  while(new!=old){
3       k=1; old=new
4       if(*){lock=0; 
                 new=new+1;}
6  };
7  if (lock==0)
8       error()
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Red-Black Graphs

Graph Transformation Rules:
 ...
 2) symbolic execution assign
 3) symbolic execution assume
 4) abstraction
 5) subsumption 
 6) cut - rule (for infeasible paths)

* *
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Formalisation 

● Tasks: 
● Red-Black Graphs, Paths, Fringes
● Labelled Transition Systems
● States, Configurations, Symbolic Execution
● Formalizing Graph Transformation Step

Relation as Inductive Definition
● Proof of Correctness and Preservation 
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Formalisation (1)
● Basic Machinery

Raw graphs, labelled transition systems:
–

–

– coherent arc sequences 

– paths
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Formalisation (2)
● Execution Data:

states, stores, (shallow) expressions :
–

– framing :

 

– program expressions as core syntax :
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Formalisation (3)
● Red-Black-Graphs:

–

– red part
– black part
– the set of subsumption links
– initial configuration (contains precondition if any)
– mapping for symbolic variables to additional constraints 
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Formalisation (4)
● Example (out of 6): Symbolic Execution.

– ui_arc ra, the (unindexed) black counterpart of red arc ra must exist in the black graph,
– ArcExt.extends is an abbreviation that states that the source of ra must be an existing vertex 

of the red graph, but not its target, and that the new red graph is obtained by adding ra to the 
arcs of the old one,

– the source of ra is is not already subsumed,
– c′ is the new configuration obtained by symbolic execution of ra
– the new red-black graph rb′ is constructed from the old one by the resp. updates
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Formalisation (5)
● The Blue Calculus:
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Proof (1)
● Lemma: red paths lead always to weaker 

configurations:

● Lemma: All red-black sub-paths included in 
the corresponding “pure black” path-sets:
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Proof (2)
● Main Result: all feasible paths were preserved 

by the “blue calculus”:



18

Development Effort
● Effort for entire theory development:

– 12 theories,
– 7932 loc
– main proof:

2000 loc
Isar-style
highly struc-
tured proof

– proof techniques:
standard in-
duction proofs;
but many, many
cases to consider
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Experimental Evaluation(1)
● The framework was implemented in an OCaml

prototype, providing also some first heuristics.
● Mergesort: 
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Experimental Evaluation(2)
● Bubblesort: 
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Conclusion
● first known formal proof for a predicate 

abstraction framework.
● available in AFP soon.
● widely appliquable for enhancements 

many static analysis techniques
● Main difficulty: working on graphs and giving

it enough inductive structure: red part, blue calc.
● Many open research problems, 

including heuristics, code-generation, 
calls in the labelling language.
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