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Motivation

With the increasing depth and complexity of proofs, automation in
interactive theorem provers becomes ever more important.

Despite enormous progress, computers still cannot prove many
statements that humans consider to be routine.
Obstacle to both the QED project (formalization of mathematics) and
more widespread adoption of formal software verification.
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Motivation

auto2: a new approach to automation that combines the best
features of tactics and SMT.

From the tactics framework:
I Incorporate heuristics that humans use when proving theorems.
I Make it easy for users to add new heuristics while maintaining

soundness (LCF architecture).
I Work with higher order logic and (simple) types.

From SMT:
I Have a robust search mechanism.

auto2 is not designed to:
I Be fully automatic.
I Have good completeness properties.

Bohua Zhan (MIT) AUTO2, a saturation-based heuristic prover August 23, 2016 4 / 27



Motivation

auto2: a new approach to automation that combines the best
features of tactics and SMT.
From the tactics framework:

I Incorporate heuristics that humans use when proving theorems.
I Make it easy for users to add new heuristics while maintaining

soundness (LCF architecture).
I Work with higher order logic and (simple) types.

From SMT:
I Have a robust search mechanism.

auto2 is not designed to:
I Be fully automatic.
I Have good completeness properties.

Bohua Zhan (MIT) AUTO2, a saturation-based heuristic prover August 23, 2016 4 / 27



Motivation

auto2: a new approach to automation that combines the best
features of tactics and SMT.
From the tactics framework:

I Incorporate heuristics that humans use when proving theorems.
I Make it easy for users to add new heuristics while maintaining

soundness (LCF architecture).
I Work with higher order logic and (simple) types.

From SMT:
I Have a robust search mechanism.

auto2 is not designed to:
I Be fully automatic.
I Have good completeness properties.

Bohua Zhan (MIT) AUTO2, a saturation-based heuristic prover August 23, 2016 4 / 27



Motivation

auto2: a new approach to automation that combines the best
features of tactics and SMT.
From the tactics framework:

I Incorporate heuristics that humans use when proving theorems.
I Make it easy for users to add new heuristics while maintaining

soundness (LCF architecture).
I Work with higher order logic and (simple) types.

From SMT:
I Have a robust search mechanism.

auto2 is not designed to:
I Be fully automatic.
I Have good completeness properties.

Bohua Zhan (MIT) AUTO2, a saturation-based heuristic prover August 23, 2016 4 / 27



Table of Contents

1 Motivation

2 Overall architecture

3 Details
Case analysis
E-matching
Proof steps
Proof scripts

4 Case studies

5 Future work and conclusion

Bohua Zhan (MIT) AUTO2, a saturation-based heuristic prover August 23, 2016 5 / 27



Overall architecture

Implemented in Isabelle/ML, using Isabelle/HOL as base logic.

Transform input problem into contradiction form:

[A1,A2, . . . ,An] =⇒ C becomes [A1,A2, . . . ,An,¬C ] =⇒ False.

Important: Previously proved theorems are not among the
assumptions.

I Instead they are encoded into set of allowed actions.
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Overall architecture

Saturation based: maintain a list of items — facts derived from the
initial assumptions. This list is initially A1, . . . ,An,¬C .

New items are generated from existing ones using proof steps. Proof
steps are ML functions that accept as input one or two existing items,
and output (among other possibilities) a list of items that logically
follow from the input items.
Best-first search: each item is assigned a score. New items are put
into a priority queue, and are inserted into the main list (and
considered by proof steps) in order of their score.
Algorithm ends when False is derived, or when there are no more
items waiting to be processed, or if a timeout condition is reached.
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A simple example

Given an infinite sequence X = (X0,X1,X2, . . . ), assume X is
monotone increasing, show −X is monotone decreasing, where −X is
defined by (−X )i = −(Xi).

In Isabelle:

monotone_incr X =⇒ monotone_decr (−X ).

In contradiction form:

[monotone_incrX ,¬monotone_decr (−X )] =⇒ False.
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A simple example

monotone_incr X ¬monotone_decr (−X )
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A simple example: linearized trace

1. monotone_incr X (assumption)
2. ¬monotone_decr (−X ) (assumption)
3. ∀m n.m ≤ n −→ Xm ≤ Xn (1, def. of monotone_incr)
4. ¬∀m n.m ≤ n −→ (−X )n ≤ (−X )m (2, def. of monotone_decr)
5. m ≤ n,¬(−X )n ≤ (−X )m (4, skolemization)
6. Xm ≤ Xn (3 and 5a, quantifier instantiation)
7. (−X )m = −(Xm), (−X )n = −(Xn) (5b, def. of −X )
8. ¬Xm ≤ Xn (5b and 7, inequalities)
9. False (6 and 8, contradiction)
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Details: case analysis

A box corresponds to a subcase of the problem. They are specified by
a list of additional assumptions. The boxes are organized into a
lattice:

Initial box

Assums: P1 Assums: P2

Assums: P1,P2

New boxes are created by proof steps.
Each item is placed in a box. Placing item P into box with additional
assumptions P1,P2 is the same as deriving fact
[A1, . . . ,An,¬C ,P1,P2] =⇒ P.
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Details: case analysis

When a contradiction is derived in a box, the box is called resolved,
and appropriate facts are added to its parent boxes:
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Details: case analysis

When a contradiction is derived in a box, the box is called resolved,
and appropriate facts are added to its parent boxes:
On resolving the right box:

Initial box
Facts ¬P1,¬P2

Assums: P1
Facts: ¬P2,False

Assums: P2
Facts: ¬P1,False

Assums: P1,P2
Facts: False
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Details: case analysis

This is similar to how case splitting is handled in the DPLL algorithm,
but there are a few differences:

I Case splits are generated by proof steps, which produce them based on
what facts are currently derived.

I Case splits are not necessarily in sequential order.
I Derivation in different subcases proceed in parallel.
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Details: E-matching

The E-matching problem: given a set of equalities S, a pattern p, and
a term t, find all instantiations σ of arbitrary variables in p, so that
p(σ) = t ′, where t ′ ∼ t according to equalities in S.

Examples:
I S = {x(y + z) = xy + xz}, p =?a+?b, t = x(y + z).

Result: σ = {?a := xy , ?b := xz}, p(σ) = t ′ = xy + xz .
I S = {y = f (x), z = g(y)}, p = g(f (?a)), t = z .

Result: σ = {?a := x}, p(σ) = t ′ = g(f (x)).
I S = {x = y , z = f (y)}, p = f (x), t = z .

Result: σ = {}, p(σ) = t ′ = f (x).
Widely used for quantifier instantiation in SMT solvers.
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Details: E-matching

E-matching is often used as the first step of a proof step function.

Example: given a previously proved theorem of form [A,B] =⇒ C ,
where vars(C) ⊆ vars(A) ∪ vars(B), can write proof step that

I Perform E-matching on two facts against patterns A and B.
I For each match, output the instantiated C .
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Details: Proof steps

Proof steps encapsulate how to use each previously proved theorem,
various heuristics, how to reason with logic, sets, arithmetic, etc.

Simple proof steps can be added in one line of code (for example,
apply a theorem [A,B] =⇒ C in the forward direction).
However, arbitrarily complex proof steps can be written in ML, with
soundness guaranteed by the LCF architecture (similar to tactics in
Isabelle).
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Details: Proof scripts

For a more difficult theorem, users can supply intermediate steps.
auto2 then tries to fill in the gaps between the steps.

I OBTAIN P: prove P, then add P to the set of derived items.
I CASE P: prove a contradiction from P, then add ¬P to the set of

derived items.
I CHOOSE x ,P(x): prove ∃x .P(x), then obtain new variable x satisfying

P(x).
I C1 THEN C2: perform C1, then perform C2 after C1 is finished.
I C1 WITH C2: perform C1, and perform C2 as a part of proving the goal

in C1.

Similar to Isar, but with simpler structure, and no need to reference
names of previous lemmas or tactics.
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names of previous lemmas or tactics.
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Case studies

Formalizations performed using auto2:
I Elementary theory of prime numbers, up to infinitude of prime numbers

and the unique factorization theorem.
I Functional data structures, including red-black trees.
I Parts of Hoare logic.
I Verification of imperative programs (based on Imperative/HOL,

without using Hoare or separation logic).
I Construction of real numbers using Cauchy sequences.
I Arrow’s impossibility theorem.

In all case studies, we aim to use auto2 to prove all major theorems,
using proof scripts at a level of detail comparable to usual
mathematical exposition.
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Case studies: prime numbers

Lemma larger_prime (for proving infinitude of prime numbers):
∃p.prime p ∧ n < p

with proof script
CHOOSE p, prime p ∧ p dvd fact n + 1 THEN
CASE p ≤ n WITH OBTAIN p dvd fact n
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Case studies: prime numbers

Lemma factorization_unique_aux (for proving uniqueness of
factorization):
∀p ∈ setM.prime p =⇒ ∀p ∈ setN.prime p =⇒∏

i∈M i dvd
∏

i∈N i =⇒ M ⊆ N

with proof script
CASE M = ∅ THEN
CHOOSE M ′, m, M = M ′ + {m} THEN
OBTAIN m dvd

∏
i∈N i THEN

CHOOSE n, n ∈ N ∧m dvd n THEN
CHOOSE N ′, N = N ′ + {n} THEN
OBTAIN m = n THEN
OBTAIN

∏
i∈M′ i dvd

∏
i∈N′ i THEN

STRONG_INDUCT (M, [Arbitrary N])

Bohua Zhan (MIT) AUTO2, a saturation-based heuristic prover August 23, 2016 22 / 27



Case studies: verification of imperative programs

Based on Imperative-HOL in the Isabelle library. Reason directly from
the semantics of commands (no use of Hoare or separation logic).

Data structures and algorithms verified:
I Arrays: reverse, quicksort.
I Linked list: insert, remove, reverse, merge.
I Binary trees: insert, delete-min.

Most proofs are either automatic or only need specifying the
induction scheme, whereas corresponding proofs using tactics can run
for several dozen lines. The theorems also appear to be beyond the
reach of Sledgehammer tools.
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Case studies: Arrow’s impossibility theorem

One of the examples used as Sledgehammer benchmarks.

Important result in social choice theory: it is impossible to design a
voting system for more than two candidates that satisfy a set of
reasonable conditions.
Proofs of all major lemmas / theorems are done using auto2, with
slightly fewer subgoals than in the tactics version.
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Future work

Present partial or completed proofs in a way that is easy for humans
to read and navigate (for debugging or understanding the proof).

Systematic, well-tested library of proof steps for:
I Equality and inequality reasoning on natural numbers, integers,

rationals, and real numbers.
I Reasoning about sets and partial functions.

For formalization of mathematics: systems of heuristics for real and
complex analysis, abstract algebra, number theory, discrete
mathematics, etc.
For verification of imperative programs: incorporating separation
logic, as well as further techniques such as symbolic execution and
shape analysis.
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Conclusion

After one and a half years of development, auto2 already provides
automation that compares favorably with both tactics and
Sledgehammer in Isabelle.

Improvements are still to be made on all fronts.
Opportunity to carry automation in Isabelle (and possibly other proof
assistants) to the next level.
Link to code:

https://github.com/bzhan/auto2
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